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This sixth edition of Physics for the IB Diploma is fully updated to cover the
content of the IB Physics Diploma syllabus that will be examined in the
years 2016—2022.

Physics may be studied at Standard Level (SL) or Higher Level (HL).
Both share a common core, which is covered in Topics 1-8. At HL the

core 1s extended to include Topics 9—12. In addition, at both levels,
students then choose one Option to complete their studies. Each option
consists of common core and additional Higher Level material. You can
identify the HL content in this book by ‘HL included in the topic title (or
section title in the Options), and by the red page border. The four Options
are included in the free online material that is accessible using
education.cambridge.org/ibsciences.

The structure of this book follows the structure of the IB Physics
syllabus. Each topic in the book matches a syllabus topic, and the sections
within each topic mirror the sections in the syllabus. Each section begins
with learning objectives as starting and reference points. Worked examples
are included in each section; understanding these examples is crucial to
performing well in the exam. A large number of test yourself questions
are included at the end of each section and each topic ends with exam-
style questions. The reader is strongly encouraged to do as many of these
questions as possible. Numerical answers to the test yourself questions are
provided at the end of the book; detailed solutions to all questions are
available on the website. Some topics have additional questions online;
these are indicated with the online symbol, shown here.

Theory of Knowledge (TOK) provides a cross-curricular link between
different subjects. It stimulates thought about critical thinking and how
we can say we know what we claim to know. Throughout this book, TOK
features highlight concepts in Physics that can be considered from a TOK
perspective. These are indicated by the “TOK’ logo, shown here.

Science is a truly international endeavour, being practised across all
continents, frequently in international or even global partnerships. Many
problems that science aims to solve are international, and will require
globally implemented solutions. Throughout this book, International-
Mindedness features highlight international concerns in Physics. These are
indicated by the ‘International-Mindedness’ logo, shown here.

Nature of science is an overarching theme of the Physics course. The
theme examines the processes and concepts that are central to scientific
endeavour, and how science serves and connects with the wider
community. At the end of each section in this book, there is a ‘Nature of
science’ paragraph that discusses a particular concept or discovery from
the point of view of one or more aspects of Nature of science. A chapter
giving a general introduction to the Nature of science theme is available
in the free online material.

Introduction

INTRODUCTION




Free online material

Additional material to support the IB Physics Diploma course is available
online. Visit education.cambridge.org/ibsciences and register to access
these resources.

Besides the Options and Nature of science chapter, you will find
a collection of resources to help with revision and exam preparation.
This includes guidance on the assessments, additional Topic questions,
interactive self-test questions and model examination papers and mark
schemes. Additionally, answers to the exam-style questions in this book
and to all the questions in the Options are available.

Note from the author
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I have received help from a number of students at ACS Athens in
preparing some of the questions included in this book. These include
Konstantinos Damianakis, Philip Minaretzis, George Nikolakoudis,
Katayoon Khoshragham, Kyriakos Petrakos, Majdi Samad, Stavroula
Stathopoulou, Constantine Tragakes and Rim Versteeg. I sincerely thank
them all for the invaluable help.

[ owe an enormous debt of gratitude to Anne Trevillion, the editor of
the book, for her patience, her attention to detail and for the very many
suggestions she made that have improved the book substantially. Her
involvement with this book exceeded the duties one ordinarily expects
from an editor of a book and I thank her from my heart. I also wish to
thank her for her additional work of contributing to the Nature of science
themes throughout the book.

Finally, I wish to thank my wife, Ellie Tragakes, for her patience with

me during the completion of this book.
K.A.Tsokos



Measurement and uncertainties 1

1.1 Measurement in physics

Physics is an experimental science in which measurements made must be
expressed in units. In the international system of units used throughout
this book, the SI system, there are seven fundamental .units, which are
defined in this section. All quantities are expressed in terms of these units
directly, or as a combination of them.

The Sl system

The SI system (short for Systéme International d’Unités) has seven
fundamental units (it is quite amazing that only seven are required).
These are:

1 The metre (m).This is the unit of distance. It is the distance travelled

3 _ : 1
by light in a vacuum in a time of 299795458 seconds.

2 The kilogram (kg). This is the unit of mass. It is the mass of a certain
quantity of a platinum—iridium alloy kept at the Bureau International
des Poids et Mesures in France.

3 The second (s). This is the unit of time. A second is the duration of
9192631770 full oscillations of the electromagnetic radiation emitted
in a transition between the two hyperfine energy levels in the ground
state of a caesium-133 atom.

4 The ampere (A).This is the unit of electric current. It is defined as
that current which, when flowing in two parallel conductors 1 m apart,
produces a force of 2 X 10’ N on a length of 1m of the conductors.

of the

1
5 The kelvin (K).This is the unit of temperature. It is 27316

thermodynamic temperature of the triple point of water.

6 The mole (mol). One mole of a substance contains as many particles as
there are atoms in 12 g of carbon-12. This special number of particles is
called Avogadro’s number and is approximately 6.02 x 10%.

7 The candela (cd). This is a unit of luminous intensity. It is the intensity

1
of a source of frequency 5.40 X 10'* Hz emitting @W per steradian.

You do not need to memorise the details of these definitions.

In this book we will use all of the basic units except the last one.
Physical quantities other than those above have units that are
combinations of the seven fundamental units. They have derived units.
For example, speed has units of distance over time, metres per second
(i.e. m/s or, preferably, ms™'). Acceleration has units of metres per second
squared (i.e. m/s%, which we write as ms2). Similarly, the unit of force
is the newton (N). It equals the combination kgms ™2 Energy, a very
important quantity in physics, has the joule (J) as its unit. The joule is the
combination N'm and so equals (kgms ?m), or kgm?s 2. The quantity

Learning objectives
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State the fundamental units of
the SI system.

Be able to express numbers in
scientific notation.

Appreciate the order of
magnitude of various quantities.
Perform simple order-of-
magnitude calculations mentally.
Express results of calculations to
the correct number of significant
figures.




power has units of energy per unit of time, and so is measured in Js~1. This
combination is called a watt. Thus:

1W=(1Nms )=(1kgms *ms ') =1kgm?s™

Metric multipliers

Small or large quantities can be expressed in terms of units that are related
to the basic ones by powers of 10.Thus, a nanometre (nm) is 10" m,

a microgram (ug) is 10 ¢ g= 10 kg, a gigaelectron volt (GeV) equals

10% eV, etc. The most common prefixes are given in Table 1.1.

Power Prefix Symbol Power Prefix Symbol
10718 atto- A 10 deka- da
107" | femto- F 10? hecto- h
1072 | pico- p 10° kilo- k
107° nano- n 10° mega- M
1078 micro- n 10° giga- G
1073 milli- m 10" tera- T
1072 centi- c 10" peta- P
107 deci- d 10'8 exa- E

Table 1.1 Common prefixes in the Sl system.

Orders of magnitude and estimates

Bxpressing a quantity as a plain power of 10 gives what is called the order
of magnitude of that quantity. Thus, the mass of the universe has an order
of magnitude of 10°°kg and the mass of the Milky Way galaxy has an order
of magnitude of 10" kg. The ratio of the two masses is then simply 102,

Tables 1.2, 1.3 and 1.4 give examples of distances, masses and times,
given as orders of magnitude.

Length/m

distance to edge of observable universe 10%
distance to the Andromeda galaxy 102
diameter of the Milky Way galaxy 102
distance to nearest star 10
diameter of the solar system 10"
distance to the Sun 10"
radius of the Earth 107
size of a cell 107
size of a hydrogen atom Tg e
size of an A=50 nucleus 1912
size of a proton 1017
Planck length 1073

Table 1.2 Some interesting distances.



Time/s
the universe T age of the universe o
the Milky Way galaxy 104 age of the Earth 10'
the Sun 10% time of travel by light to nearby star 108
the Earth 10% one year 107
Boeing 747 (empty) 10° one day 10°
an apple 0.2 period of a heartbeat 1
a raindrop 1078 lifetime of a pion 1078
a bacterium 1071 lifetime of the omega particle 1071
smallest virus 1072 time of passage of light across a proton 102
a hydrogen atom 107 Table 1.4 Some interesting times.
an electron 10730

Table 1.3 Some interesting masses.

Worked examples

1.1 Estimate how many grains of sand are required to fill the volume of the Earth. (This is a classic problem that
goes back to Aristotle. The radius of the Earth is about 6 X 10°m.)

The volume of the Earth is:
IR =% 3% (6% 10%)°~8 x 1020 =10 m?

The diameter of a grain of sand varies of course, but we will take 1 mm as a fair estimate. The volume of a grain of
sand is about (1 X 107> m?.

Then the number of grains of sand required to fill the Earth is:

1021
(Ax107%°

1.2 Estimate the speed with which human hair grows.

[ have my hair cut every two months and the barber cuts a length of about 2 cm. The speed is therefore:

2x1072 S i LT
2X 30X 24 X 60 X 60 3x2x%36%10%
A 90
6X40 240
=4x10"ms!
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1.3 Estimate how long the line would be if all the people on Earth were to hold hands in a straight line. Calculate
how many times it would wrap around the Earth at the equator. (The radius of the Earth is about 6 X 10°m.)

Assume that each person has his or her hands stretched out to a distance of 1.5m and that the population of Earth
is 7% 10° people.

Then the length of the line of people would be 7% 10?x1.5m= 10 m.

The circumference of the Earth is 2nR ~ 6 X6 X 10°m=~4 X 10’ m.

10

4x107

So the line would wrap =250 times around the equator.

1.4 Estimate how many apples it takes to have a combined mass equal to that of an ordinary family car.

Assume that an apple has a mass of 0.2kg and a car has a mass of 1400kg.

Then the number of apples is 13(30 =,

1.5 Estimate the time it takes light to arrive at Earth from the Sun. (The Earth—Sun distance is 1.5 X 10 m.)

ist 1.5x 10"
The time taken is girance Lol

~0.5% 10*=500s=8 min

speed T 3x108

Significant figures

The number of digits used to express a number carries information
about how precisely the number is known. A stopwatch reading of 3.2
(two significant figures, s.f.) is less precise than a reading of 3.23s (three
s.f.). If you are told what your salary is going to be, you would like that
number to be known as precisely as possible. It is less satisfying to be told
that your salary will be ‘about 1000’ (1 s.f.) euro a month compared to
a salary of ‘about 1250’ (3 s.f.) euro a month. Not because 1250 is larger
than 1000 but because the number of ‘about 1000’ could mean anything
from a low of 500 to a high of 1500.You could be lucky and get the 1500
but you cannot be sure. With a salary of “about 1250’ your actual salary
could be anything from 1200 to 1300, so you have a pretty good idea of
what it will be.

How to find the number of significant figures in a number is illustrated
in Table 1.5.




Number Number of s.f. | Reason Scientific notation
504 3 in an integer all digits count (if last digit is 5.04x 102
not zero)
608000 3 zeros at the end of an integer do not count 6.08x10°
200 1 zeros at the end of an integer do not count 2x102
0.000305 zeros in front do not count 3.05x107*
0.005900 4 zeros at the end of a decimal count, those 5.900x1073
in front do not

Table 1.5 Rules for significant figures.

Scientific notation means writing a number in the form a % 10°, where a
is decimal such that 1 < < 10 and b is a positive or negative integer. The

number of digits in a is the number of significant figures in the number.

In multiplication or division (or in raising a number to a power or

taking a root), the result must have as many significant figures as the least

precisely known number entering the calculation. So we have that:

-

2sf 3sf

6.244

- —
4s.f

1.25
——
35t

23 X 578=13294 =~ 1.3x 10"
—— —

2s.f.

3af

(the least number of s.f. is shown in red)

=4.9952...=5.00x10°=5.00
—

12.3° =1860.867... =~ 1.86 x 10>
e — —

35t

3s.f.

/ = ~ 2
58900 =242.6932. .. 2.43 XflO

3s.f.

In adding and subtracting, the number of decimal digits in the answer

must be equal to the least number of decimal places in the numbers added
or subtracted. Thus:

321+41=732=73
[ N —

2dp. 1dp.

1d.p.

12.367 —3.15=9.217 = 9.22
—— == ——

3d.p.

2d.p.

2d.p.

(the least number of d.p. is shown in red)

Use the rules for rounding when writing values to the correct number

of decimal places or significant figures. For example, the number
542.48 =5.4248 X 10? rounded to 2,3 and 4 s.f. becomes:

5.4]248 X 10%=5.4 x 102
5.42|48 X 10°=5.42 x 102
5.424|8 X 10*~5.425 x 102

rounded to 2 s.f.
rounded to 3 s.f.
rounded to 4 s.f.

There is a special rule for rounding when the last digit to be dropped

is 5 and it is followed only by zeros, or not followed by any other digit.

1 MEASUREMENT AND UNCERTAINTIES



This is the odd—even rounding rule. For example, consider the number
3.2500000... where the zeros continue indéﬁnitely. How does this
number round to 2 s.f.? Because the digit before the 5 is even we do not
round up, so 3.2500000... becomes 3.2. But 3.3500000... rounds up to
3.4 because the digit before the 5 is odd.

Nature of science

Early work on electricity and magnetism was hampered by the use of
different systems of units in different parts of the world. Scientists realised
they needed to have a common system of units in order to learn from
each other’s work and reproduce experimental results described by others.
Following an international review of units that began in 1948, the SI
system was introduced in 1960. At that time there were six base units. In
1971 the mole was added, bringing the number of base units to the seven

in use today.

As the instruments used to measure quantities have developed, the

definitions of standard units have been refined to reflect the greater

precision possible. Using the transition of the caesium-133 atom to

measure time has meant that smaller intervals of time can be measured

accurately. The SI system continues to evolve to meet the demands of

scientists across the world. Increasing precision in measurement allows

scientists to notice smaller differences between results, but there is always

uncertainty in any experimental result. There are no ‘exact’ answers.

? Test yourself

1 How long does light take to travel across a proton? 9 Give an order-of-magnitude estimate of the
2 How many hydrogen atoms does it take to make density of a proton.
up the mass of the Earth? 10 How long does light take to traverse the
3 What is the age of the universe expressed in diameter of the solar system?
units of the Planck time? 11 An electron volt (eV) is a unit of energy equal to
4 How many heartbeats are there in the lifetime of 1.6 x10"¥J. An electron has a kinetic energy of
a person (75 years)? 2.5eV.
5 What is the mass of our galaxy in terms of a solar a How many joules is that?
mass? b What is the energy in eV of an electron that
6 What is the diameter of our galaxy in terms of has an energy of 8.6 X 10718]?
the astronomical unit, i.e. the distance between 12 What is the volume in cubic metres of a cube of
the Earth and the Sun (1AU=1.5x 10" m)? side 2.8 cm?
7 The molar mass of water is 18 gmol™!. How 13 What is the side in metres of a cube that has a
many molecules of water are there in a glass of volume of 588 cubic millimetres?
water (mass of water 300 g)? 14 Give an order-of-magnitude estimate for the
8 Assuming that the mass of a person is made up mass of:
entirely of water, how many molecules are there a an apple

in a human body (of mass 60kg)?

b this physics book
¢ asoccer ball.



15 A white dwarf star has a mass about that of the 20 A block of mass 1.2 kg is raised a vertical distance
Sun and a radius about that of the Earth. Give an of'5.55m in 2.450s. Calculate the power

order-of-magnitude estimate of the density of a
white dwarf.

16 A sports car accelerates from rest to 100 km per
hour in 4.0s. What fraction of the acceleration
due to gravity is the car’s acceleration?

17 Give an order-of-magnitude estimate for the
number of electrons in your body.

delivered. (PZM—fh and ¢ =9.81ms™?)

21 Find the kinetic energy (Ex Z%mvz) of a block of
mass 5.00kg moving at a speed of 12. 5ms ™.

22 Without using a calculator, estimate the value
of the following expressions. Then compare
your estimate with the exact value found using a

al .
18 Give an order-of-magnitude estimate for the g ;zgator
ratio of the electric force between two electrons a 73
1m apart to the gravitational force between the
b 2.80x1.90
electrons.
19 The frequency f of oscillation (a quantity with ¢ FPN—
units of inverse seconds) of a mass m attached . oy _6'
to a spring of spring constant k (a quantity with d 8.99 X 10" X7 X 102 . X7x10
units of force per length) is related to m and k. (8%10%)
By writing f = cm*k” and matching units 6.6x1071" x 6% 10%*
, _ [k : (6.4 % 10%2
on both sides, show that f=¢ e where cis a

dimensionless constant.

1.2 Uncertainties and errors

This section introduces the basic methods of dealing with experimental
error and uncertainty in measured physical quantities. Physics is an
experimental science and often the experimenter will perform an
experiment to test the prediction of a given theory. No measurement will
ever be completely accurate, however, and so the result of the experiment
will be presented with an experimental error.

Types of uncertainty

There are two main types of uncertainty or error in a measurement. They
can be grouped into systematic and random, although in many cases
it is not possible to distinguish clearly between the two. We may say that
random uncertainties are almost always the fault of the observer, whereas
systematic errors are due to both the observer and the instrument being
used. In practice, all uncertainties are a combination of the two.

Systematic errors

A systematic error biases measurements in the same direction; the
measurements are always too large or too small. If you use a metal ruler
to measure length on a very hot day, all your length measurements will be
too small because the metre ruler expanded in the hot weather. If you use
an ammeter that shows a current of 0.1 A even before it is connected to

Learning objectives

e Distinguish between random
and systematic uncertainties.

e Work with absolute, fractional
and percentage uncertainties.

e Use error bars in graphs.

e Calculate the uncertainty in a
gradient or an intercept.
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Figure 1.1 The falling block accelerates the
cart.

a circuit, every measurement of current made with this ammeter will be
larger than the true value of the current by 0.1A.

Suppose you are investigating Newton’s second law by measuring the
acceleration of a cart as it is being pulled by a falling weight of mass m
(Figure 1.1). Almost certainly there is a frictional force fbetween the cart
and the table surface. If you forget to take this force into account, you
would expect the cart’s acceleration a to be:

_mg
M
where M is the constant combined mass of the cart and the falling block.
The graph of the acceleration versus m would be a straight line through
the origin, as shown by the red line in Figure 1.2. If you actually do the
experiment, you will find that you do get a straight line, but not through

the origin (blue line in Figure 1.2). There is a negative intercept on the
vertical axis.

a/ms? 20—

1.0

05

0.0

| 1

0.1 0.2 03 0.4
| 3 m/kg

-0.5 + |

-1.0-

Figure 1.2 The variation of acceleration with falling mass with (blue) and without
(red) frictional forces.

This is because with the frictional force present, Newton’s second law
predicts that:

=S

M M
So a graph of acceleration a versus mass m would give a straight line with
a negative intercept on the vertical axis.

Systematic errors can result from the technique used to make a
measurement. There will be a systematic error in measuring the volume
of a liquid inside a graduated cylinder if the tube is not exactly vertical.
The measured values will always be larger or smaller than the true value,
depending on which side of the cylinder you look at (Figure 1.3a). There
will also be a systematic error if your eyes are not aligned with the liquid
level in the cylinder (Figure 1.3b). Similarly, a systematic error will arise if
you do not look at an analogue meter directly from above (Figure 1.3c).

-Systematic errors are hard to detect and take into account.
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Figure 1.3 Parallax errors in measurements.

Random uncertainties

The presence of random uncertainty is revealed when repeated
measurements of the same quantity show a spread of values, some too large

some too small. Unlike systematic errors, which are always biased to be in

the same direction, random uncertainties are unbiased. Suppose you ask ten

people to use stopwatches to measure the time it takes an athlete to run a

distance of 100m. They stand by the finish line and start their stopwatches

when the starting pistol fires. You will most likely get ten different values

for the time. This is because some people will start/stop the stopwatches

too early and some too late.You would expect that if you took an average

of the ten times you would get a better estimate for the time than any

of the individual measurements: the measurements fluctuate about some 21 22 23 24 25 26 27
value. Averaging a large number of measurements gives a more accurate n i EREERNERRRRARRARY ! L]

estimate of the result. (See the section on accuracy and precision, overleaf.)

We include within random uncertainties, reading uncertainties (which

really is a different type of error altogether). These have to do with the

precision with which we can read an instrument. Suppose we use a ruler

to record the position of the right end of an object, Figure 1.4. 305 31 32 33 SA s 36
The first ruler has graduations separated by 0.2 cm. We are confident e R R TR AT

that the position of the right end is greater than 23.2 cm and smaller

than 23.4 cm. The true value is somewhere between these bounds. The Figure 1.4 Two rulers with different
average of the lower and upper bounds is 23.3 cm and so we quote the graduations. The top has a width between
measurement as (23.3+0.1) cm. Notice that the uncertainty of 0.1 cm graduations of 0.2cm and the other 0.1cm.
is half the smallest width on the ruler. This is the conservative way
of doing things and not everyone agrees with this. What if you scanned
the diagram in Figure 1.4 on your computer, enlarged it and used your
computer to draw further lines in between the graduations of the ruler.
Then you could certainly read the position to better precision than
the £0.1 cm. Others might claim that they can do this even without a
computer or a scanner! They might say that the right end is definitely
short of the 23.3 cm point. We will not discuss this any further — it is an
endless discussion and, at this level, pointless.
Now let us use a ruler with a finer scale. We are again confident that the
position of the right end is greater than 32.3 cm and smaller than 32.4 cm.
The true value is somewhere between these bounds. The average of the
bounds is 32.35cm so we quote a measurement of (32.35+0.05) cm. Notice

1 MEASUREMENT AND UNCERTAINTIES




again that the uncertainty of =0.05 cm is half the smallest width on the
ruler. This gives the general rule for analogue instruments:

The uncertainty in reading an instrument is * half of the smallest

width of the graduations on the instrument.

> For digital instruments, we may take the reading error to be the smallest

Instrument Reading error .. ) i
division that the instrument can read. So a stopwatch that reads time to

ruler £0.5mm two decimal places, e.g. 25.38s, will have a reading error of £0.01s, and a
vernier calipers +0.05 mm weighing scale that records a mass as 184.5 g will have a reading error of
micrometer +0.005mm +0.1g. Typical reading errors for some common instruments are listed in
electronic weighing +0.19 Table 1.6.
scale A d ..
stopwatch 40015 ccuracy and precision

) In physics, a measurement is said to be accurate if the systematic error
Table 1.6 Reading errors for some common

— in the measurement is small. This means in practice that the measured

value is very close to the accepted value for that quantity (assuming that
this is known — it is not always). A measurement is said to be precise

if the random uncertainty is small. This means in practice that when

the measurement was repeated many times, the individual values were
close to each other. We normally illustrate the concepts of accuracy and
precision with the diagrams in Figure 1.5: the red stars indicate individual
measurements. The ‘true’ value is represented by the common centre

of the three circles, the ‘bull’s-eye’. Measurements are precise if they are
clustered together. They are accurate if they are close to the centre. The
descriptions of three of the diagrams are obvious; the bottom right clearly
shows results that are not precise because they are not clustered together.
But they are accurate because their average value is roughly in the centre.

4

not accurate and not precise accurate and precise

+
+

not accurate but precise accurate but not precise

Figure 1.5 The meaning of accurate and precise measurements. Four different sets of
four measurements each are shown.




Averages

In an experiment a measurement must be repeated many times, if at all
possible. If it is repeated N times and the results of the measurements are
X1, X2, ..., XN, we calculate the mean or the average of these values (x)
using:

.__x1+x2+ st XN

%=

N

This average is the best estimate for the quantity x based on the N
measurements. What about the uncertainty? The best way is to get the

standard deviation of the N numbers using your calculator. Standard
deviation will not be examined but you may need to use it for your
Internal Assessment, so it is good idea to learn it — you will learn it

in your mathematics class anyway. The standard deviation ¢ of the N
measurements is given by the formula (the calculator finds this very
easily):

[ =%)2+ (o —%) 2+ -+ + (pon—)°
N-1

o=

A very simple rule (not entirely satisfactory but acceptable for this course)
is to use as an estimate of the uncertainty the quantity:

Xmax — Xmin
A =

2

i.e. half of the difference between the largest and the smallest value.
For example, suppose we measure the period of a pendulum (in
seconds) ten times:

1.20,1.25,1.30,1.13,1.25,1.17,1.41,1.32,1.29, 1.30

We calculate the mean:

__t1+t2+"'+t10_
t =10 =1.2620s

and the uncertainty:

o bmn . 1.41—1.13
S A

=0.140s

How many significant figures do we use for uncertainties? The general
rule is just one figure. So here we have At=0.1s.The uncertainty is in the
first decimal place. The value of the average period must also be
expressed to the same precision as the uncertainty, i.e. here to one
decimal place, t =1.3s.We then state that:

period=(1.3£0.1)s

(Notice that each of the ten measurements of the period is subject to a
reading error. Since these values were given to two decimal places, it is
implied that the reading error is in the second decimal place, say +0.01s.

Exam tip
There is some case to be made
for using two significant figures
in the uncertainty when the
first digit in the uncertainty

is 1. So in this example,

since At=0.140s does begin
with the digit 1, we should
state At=0.14s and quote

the result for the period as
‘period=(1.261+0.14)s’.
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This is much smaller than the uncertainty found above so we ignore the
reading error here. If instead the reading error were greater than the error
due to the spread of values, we would have to include it instead. We will
not deal with cases when the two errors are comparable.)

You will often see uncertainties with 2 s.f. in the scientific
literature. For example, the charge of the electron is quoted as
e=(1.602176565%0.000000035) X 10! C and the mass of the electron
as me=(9.10938291%0.000 00040) X 10~ kg. This is perfectly all right
and reflects the experimenter’s level of confidence in his/her results.
Expressing the uncertainty to 2 s.f. implies a more sophisticated statistical
analysis of the data than is normally done in a high school physics course.
With a lot of data, the measured values of e form a normal distribution
with a given mean (1.602176565 X 107" C) and standard deviation
(0.000000035 x 1071 C). The experimenter is then 68% confident that
the measured value of e lies within the interval [1.602176 530 X 1079,
1.602176600% 1071 C].

Worked example

1.6 The diameter of a steel ball is to be measured using a micrometer caliper. The following are sources of error:
1 The ball is not centred between the jaws of the caliper.
2 The jaws of the caliper are tightened too much.
3 The temperature of the ball may change during the measurement.
4 The ball may not be perfectly round.

Determine which of these are random and which are systematic sources of error.

Sources 3 and 4 lead to unpredictable results, so they are random errors. Source 2 means that the measurement of

diameter is always smaller since the calipers are tightened too much, so this is a systematic source of error. Source 1
certainly leads to unpredictable results depending on how the ball is centred, so it is a random source of error. But

since the ball is not centred the ‘diameter’ measured is always smaller than the true diameter, so this is also a source
of systematic error.

Propagation of uncertainties

A measurement of a length may be quoted as L= (28.3+0.4) cm. The value
28.3 is called the best estimate or the mean value of the measurement
and the 0.4 cm is called the absolute uncertainty in the measurement.
The ratio of absolute uncertainty to mean value is called the fractional
uncertainty. Multiplying the fractional uncertainty by 100% gives the
percentage uncertainty. So, for L= (28.3£0.4) cm we have that:

e absolute uncertainty = 0.4 cm

. .04 _
e fractional uncertainty = 5o == 0.0141
e percentage uncertainty =0.0141 X 100%=1.41%




In general, if a=ap+ Aa, we have:
e absolute uncertainty = Aa The subscript 0 indicates the mean

value, so ag is the mean value of a.

. . Aa
e fractional uncertainty = PN
0

. A
e percentage uncertain =245 100%
p g ty a

Suppose that three quantities are measured in an experiment: a = ay % Aq,
b=bot Ab, c= ot Ac. We now wish to calculate a quantity Q in terms of
a, b, c. For example, if a, b, ¢ are the sides of a rectangular block we may
want to find Q= ab, which is the area of the base, or Q=24+ 2b, which
is the perimeter of the base, or Q= abc, which is the volume of the block.
Because of the uncertainties in a, b, ¢ there will be an uncertainty in the
calculated quantities as well. How do we calculate this uncertainty?

There are three cases to consider. We will give the results without proof.

Addition and subtraction

The first case involves the operations of addition and/or subtraction. For
example, we might have Q=a+bor Q=a — b or Q=a+b—c.Then,

in all cases the absolute uncertainty in Q is the sum of the absolute
uncertainties in 4, b and c.

Exam tip
Q=a+b = AQ=Aat+Ab

Q=a—b = AQ=Aa+Ab
Q=atb—c = AQ=Aa+Ab+Ac

In addition and subtraction,
we always add the absolute
uncertainties, never subtract.

Worked examples

1.7 The side a of a square, is measured to be (12.4 £0.1) cm. Find the perimeter P of the square including the
uncertainty.

Because P=a+a+a+a, the perimeter is 49.6 cm. The absolute uncertainty in P is:
AP=Aa+Aa+Aa+ Aa
AP=4Aa
AP=0.4cm

Thus, P=(49.6+0.4) cm.

1.8 Find the percentage uncertainty in the quantity Q=a— b, where ¢=538.7+0.3 and 6=537.3+0.5. Comment
on the answer.

The calculated value is 1.7 and the absolute uncertainty is 0.3+0.5=0.8.So Q=1.4+0.8.
The fractional uncertainty is %%: 0.57, so the percentage uncertainty is 57%.

The fractional uncertainty in the quantities a and b is quite small. But the numbers are close to each other so their
difference is very small. This makes the fractional uncertainty in the difference unacceptably large.
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Multiplication and division

The second case involves the operations of multiplication and division.
Here the fractional uncertainty of the result is the sum of the
fractional uncertainties of the quantities involved:

_ AQ_Aa Ab
= = Qo_ao+bo
_a AQ_Aa  Ab
Q_b = Qo_ao+bo
ab ﬁ_&JF_A_b Ac

Q=7 Qo an by

Powers and roots

The third case involves calculations where quantities are raised to powers
or roots. Here the fractional uncertainty of the result is the fractional
uncertainty of the quantity multiplied by the absolute value of the

power:
_ .8 AQ_ A
Q_a = QO_InI ao
n AQ 1Aa
Q=\4 Qo nag

Worked examples
1.9 The sides of a rectangle are measured to be a=2.5cm*0.1cm and b=5.0cm* 0.1 cm. Find the area 4 of the

rectangle.

The fractional uncertainty in 4 is:

-A—a=%=0.04 or 4%

The fractional uncertainty in b is:

ATb=(5)T1)=O.02 or 2%

Thus, the fractional uncertainty in the area is 0.04+0.02=0.06 or 6%.

The area Ay is:
Ap=2.5x%5.0=12.5cm?

AA _
and 7 -=0.06

= AA=0.06 X12.5=0.75cm?

Hence A=12.5cm?* 0.8 cm? (the final absolute uncertainty is quoted to 1s.f).




1.10 A mass is measured to be m=4.4+0.2kg and its speed v is measured to be 18 + 2ms . Find the kinetic
energy of the mass.

. . . 1 g ° o
The kinetic energy is E=3mv?, so the mean value of the kinetic energy, Ey, is:

Ep=3%4.4%18%=712.8]

Using:
A_E — A_m AR &
Eo mo = )
because of
the square
we find:
AE 02 _ 2 _
7128 4.4 2%71g 0267
So:

AE=712.8%0.2677=190.8]

o Exam tip
To one significant figure, the uncertainty

: The final absolute uncertainty must be expressed to one
is AE=200=2X 10°]; that is E= (7 £ 2) x 10%].

significant figure. This limits the precision of the quoted
value for energy.

1.11 The length of a simple pendulum is increased by 4%. What is the fractional increase in the pendulum’s
period?

Ik,
The period T'is related to the length L through T= 2n\/§.

Because this relationship has a square root, the fractional uncertainties are related by:

T e 12
Ty 2 Ly
—_—
because of the
square root

We are told that % =4%.This means we have :

AT 1
—_—= 0/ — D0
Ty 2><4A) 2%
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1.12 A quantity Q is measured to be Q=3.4%0.5. Calculate the uncertainty ina— and b Q%

N

a —Q——34—0294118
A1/Q _AQ
/0. &

&_0_-52

= A1/Q) = Y 0.04325

Hence: %220.29'_5‘0.04

b Q*=3.4°=11.5600
AMQ) AQ
___:2X__.
Q@ Q

= AQA)=2Q%AQ=2X3.4X0.5=3.4
Hence: Q=123

1.13 The volume of a cylinder of base radius r and height / is given by I'= 7 h. The volume is measured with an
uncertainty of 4% and the height with with an uncertainty of 2%. Determine the uncertainty in the radius.

. Y o
We must first solve for the radius to get r= %.The uncertainty is then:

—>< 100% = l(éIiJr A_h) X 100% =

e (4 + 2) X 100% = 3%

=
2

Best-fit lines

In mathematics, plotting a point on a set of axes is straightforward. In
physics, it is slightly more involved because the point consists of measured
or calculated values and so is subject to uncertainty. So the point

(xoE Ax, yoL Ay) is plotted as shown in Figure 1.6.The uncertainties are

d

Yo+ Ay
Yo 27y

Yo— Ay

0 Xo—Ax Xo Xo+ AX X



represented by error bars.To ‘go through the error bars’ a best-fit line

can go through the area shaded grey.

In a physics experiment we usually try to plot quantities that will give
straight-line graphs. The graph in Figure 1.7 shows the variation with
extension x of the tension T'in a spring. The points and their error bars
are plotted. The blue line is the best-fit line. It has been drawn by eye by
trying to minimise the distance of the points from the line — this means

that some points are above and some are below the best-fit line.

The gradient (slope) of the best-fit line is found by using two points
on the best-fit line as far from each other as possible. We use (0, 0) and

(0.0390, 7.88).The gradient is then:

dient =52
gra 1ent—Ax

7.88—0

gradient = 0.0390-0

gradient=202Nm™!

The best-fit line has equation F=202x. (The vertical intercept is
essentially zero; in this equation x is in metres and F in newtons.)

FIN-8——— gmmm , ,

w

AF

Ax x/cm
Figure 1.7 Data points plotted together with uncertainties in the values for the

tension. To find the gradient, use two points on the best-fit line far apart from
each other.
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On the other hand it is perfectly possible to obtain data that cannot
be easily manipulated to give a straight line. In that case a smooth curve
passing through all the error bars is the best-fit line (Figure 1.8).

From the graph the maximum power is 4.1 W, and it occurs when
R=2.20.The estimated uncertainty in R is about the length of a square,
i.e. +0.1Q. Similarly, for the power the estimated uncertainty is 0.1 W.

I e e I I : T

O T
0 1 2 3 4

Figure 1.8 The best-fit line can be a curve.

Uncertainties in the gradient and intercept

When the best-fit line is a straight line we can easily obtain uncertainties
in the gradient and the vertical intercept. The idea is to draw lines of
maximum and minimum gradient in such a way that they go through

all the error bars (not just the ‘first’ and the ‘last’ points). Figure 1.9
shows the best-fit line (in blue) and the lines of maximum and minimum
gradient. The green line is the line through all error bars of greatest
gradient. The red line is the line through all error bars with smallest
gradient. All lines are drawn by eye.

The blue line has gradient kp,x = 210Nm™ ! and intercept —0.18 N.The
red line has gradient kpyin = 193Nm ! and intercept +0.13N. So we can
find the uncertainty in the gradient as:

BT i 210=193

_ ; _ Q& -1
Ak= > 5 8.5=8 Nm




0')/' T | ﬂl
/y 2 3 4

x/cm

Figure 1.9 The best-fit line, along with lines of maximum and minimum gradient.

The uncertainty in the vertical intercept is similarly:

0.13—(—0.18
Aintercept:%: 0.155=0.2N

We saw earlier that the line of best fit has gradient 202N m ™! and
zero intercept. So we quote the results as k= (2.02 % 0.08) X10% and
intercept=0.0+ 0.2 N.

Nature of science

A key part of the scientific method is recognising the errors that are
present in the experimental technique being used, and working to

reduce these as much as possible. In this section you have learned how to
calculate errors in quantities that are combined in different ways and how
to estimate errors from graphs.You have also learned how to recognise
systematic and random errors.

No matter how much care is taken, scientists know that their results
are uncertain. But they need to distinguish between inaccuracy and
uncertainty, and to know how confident they can be about the validity of
their results. The search to gain more accurate results pushes scientists to
try new ideas and refine their techniques. There is always the possibility
that a new result may confirm a hypothesis for the present, or it may
overturn current theory and open a new area of research. Being aware of
doubt and uncertainty are key to driving science forward.
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25
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27

28
29

30

?  Test yourself

The magnitudes of two forces are measured to
be 120+ 5N and 60 =3 N. Find the sum and
difference of the two magnitudes, giving the
uncertainty in each case.

The quantity Q depends on the measured values
a and b in the following ways:

a Q=%,a=20i1,b=10i1

b Q=2a+3b,a=20%£2,b=15%3
c Q=a—2ba=50x1,b=24=*1
d Q=4%4=10.010.3

2

e Q=%,a=100i5,b=20i2

In each case, find the value of Q and its
uncertainty. ,

The centripetal force is given by F="-.The
mass is measured to be 2.8 £0.1 kg, the velocity
14+2ms ! and the radius 8.0+ 0.2m; find the
force on the mass, including the uncertainty.
The radius r of a circle is measured to be
2.4cm* 0.1 cm. Find the uncertainty in:

a the area of the circle

b the circumference of the circle.

The sides of a rectangle are measured as
4.4£0.2cm and 8.5+ 0.3 cm. Find the area and
perimeter of the rectangle.

The length L of a pendulum is increased by 2%.
Find the percentage increase in the period T.

(T= 2n\/§)

The volume of a cone of base radius R and
height h is given by V= %zh.The uncertainty

in the radius and in the height is 4%. Find the
percentage uncertainty in the volume.

In an experiment to measure current and voltage
across a device, the following data was collected:
(,I1)={(0.1,26), (0.2, 48), (0.3, 65), (0.4,90)}.
The current was measured in mA and the
voltage in mV. The uncertainty in the current
was T 4mA. Plot the current versus the voltage
and draw the best-fit line through the points.
Suggest whether the current is proportional to
the voltage.

31

32

33

34

In a similar experiment to that in question 30,
the following data was collected for current
and voltage: (V,1)={(0.1,27), (0.2, 44), (0.3,
60), (0.4,78)} with an uncertainty of £4mA in
the current. Plot the current versus the voltage
and draw the best-fit line. Suggest whether the
current is proportional to the voltage.

A circle and a square have the same perimeter.
Which shape has the larger area?

The graph shows the natural logarithm of

the voltage across a capacitor of capacitance
C=5.0pF as a function of time. The voltage is

“YRC where R is

given by the equation V= T1je

the resistance of the circuit. Find:

a the initial voltage

b the time for the voltage to be reduced to half
its initial value

¢ the resistance of the circuit.

InV 4.0

3.5

3.0

2.5

2.0 ‘ ‘
0 5 10 15 20
t/s

The table shows the mass M of several stars and
their corresponding luminosity L (power emitted).
a Plot L against M and draw the best-fit line.

b Plot the logarithm of L against the logarithm
of M. Use your graph to find the relationship
between these quantities, assuming a power
law of the kind L= kM". Give the numerical
value of the parameter .

Mass M (in solar | Luminosity L (in terms
masses) of the Sun’s luminosity)
1.0£0.1 1+£0
3.0+£0.3 42+ 4
5.0+0.5 23020
12+1 4700+50
20+2 26500+300




1.3 Vectors and scalars

Quantities in physics are either scalars (i.e. they just have magnitude) or

Learning objectives

. . L ; . . e Distinguish between vector and
vectors (i.e. they have magnitude and direction). This section provides the scala® quEtite
. . s.
tools you need for dealing with vectors. A

e Resolve a vector into its

components.

Vectors

Some quantities in physics, such as time, distance, mass, speed and

e Reconstruct a vector from its

components.

temperature, just need one number to specify them. These are called o Carry out operations with

scalar quantities. For example, it is sufficient to say that the mass of a

vectors.
body is 64 kg or that the temperature is —5.0 °C. On the other hand,
many quantities are fully specified only if, in addition to a number, a
direction is needed. Saying that you will leave Paris now, in a train moving Vectors Scalars
at 220km/h, does not tell us where you will be in 30 minutes because we : A
. . . . . .. displacement distance
do not know the direction in which you will travel. Quantities that need
a direction in addition to magnitude are called vector quantities. Table i ol Seed
1.7 gives some examples of vector and scalars. acceleration mas>
A vector is represented by a straight arrow, as shown in Figure 1.10a. force time
The direction of the arrow represents the direction of the vector and the weight density
length of the arrow represents the magnitude of the vector. To say that electric field electric potential
two vectors are the same means that both magnitude and direction are magnetic field electric charge
the same. The vectors in Figure 1.10b are all equal tc.> each other. In other gravitationalfield | gravitational
words, vectors do not have to start from the same point to be equal. potential
We write vectors as italic boldface a. The magnitude is written as |a | —— temperature

or just a.

area volume

angular velocity | work/energy/power

—_— Table 1.7 Examples of vectors and scalars.
—————te
ﬁ
a b

Figure 1.10 a Representation of vectors by arrows. b These three vectors are equal to
each other.

Multiplication of a vector by a scalar

A vector can be multiplied by a number. The vector a multiplied by the
number 2 gives a vector in the same direction as a but 2 times longer. The
vector a multiplied by —0.5 is opposite to a in direction and half as long / B
(Figure 1.11).The vector —a has the same magnitude as a but is opposite a

in direction.

Figure1.11 Multiplication of vectors by a
scalar.
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Exam tip

The change in a quantity, and
in particular the change in a
vector quantity, will follow us
through this entire course.You

need to learn this well.

Addition of vectors

Figure 1.12a shows vectors d and e.We want to find the vector that equals
d+e. Figure 1.12b shows one method of adding two vectors.

d+e

a b C

Figure 1.12 aVectors d and e. b Adding two vectors involves shifting one of them
parallel to itself so as to form a parallelogram with the two vectors as the two sides.
The diagonal represents the sum. ¢ An equivalent way to add vectors.

To add two vectors:
1 Draw them so they start at a common point O.
2 Complete the parallelogram whose sides are d and e.
3 Draw the diagonal of this parallelogram starting at O.This is the vector
d+e.
Equivalently, you can draw the vector e so that it starts where the vector d
stops and then join the beginning of d to the end of e, as shown in Figure
1.12¢c.

Exam tip

[ > >

Figure 1.13

Vectors (with arrows pointing in the same sense) forming closed
polygons add up to zero.

Subtraction of vectors

Figure 1.14 shows vectors d and e. We want to find the vector that equals
d—e.
To subtract two vectors:
1 Draw them so they start at a common point O.
2 The vector from the tip of e to the tip of d is the vector d — e.
(Notice that is equivalent to adding d to —e.)

d

a . b 4

Figure 1.14 Subtraction of vectors.



Worked examples

1.14 Copy the diagram in Figure 1.15a. Use the diagram to draw the third force that will keep the point P
in equilibrium.

a b
Figure 1.15

We find the sum of the two given forces using the parallelogram rule and then draw the opposite of that vector, as
shown in Figure 1.15b.

1.15 A velocity vector of magnitude 1.2ms ™" is horizontal. A second velocity vector of magnitude 2.0ms™! must
be added to the first so that the sum is vertical in direction. Find the direction of the second vector and the
magnitude of the sum of the two vectors.

We need to draw a scale diagram, as shown in Figure 1.16. Representing 1.0ms by 2.0 cm, we see that the
1.2ms ™! corresponds to 2.4cm and 2.0ms™" to 4.0 cm.

First draw the horizontal vector. Then mark the vertical direction from O. Using a compass (or a ruler), mark a
distance of 4.0 cm from A, which intersects the vertical line at B. AB must be one of the sides of the parallelogram
we are looking for.

Now measure a distance of 2.4 cm horizontally from B to C and join O to C.This is the direction in which the
second velocity vector must be pointing. Measuring the diagonal OB (i.e. the vector representing the sum), we find
3.2cm, which represents 1.6ms ™', Using a protractor, we find that the 2.0ms ™" velocity vector makes an angle of
about 37° with the vertical.

(@

Figure 1.16 Using a scale diagram to solve a vector problem.
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1.16 A person walks 5.0km east, followed by 3.0 km north and then another 4.0km east. Find their final position.

The walk consists of three steps. We may represent each one by a vector (Figure 1.17).

e The first step is a vector of magnitude 5.0km directed east (OA).

o The second is a vector of magnitude 3.0km directed north (AB). Vectors corresponding to line
o The last step is represented by a vector of 4.0km directed east (BC). segments are shown as bold

The person will end up at a place that is given by the vector sum of capital letters, for example

these three vectors, that is OA + AB + BC, which equals the vector OC. OA.The magpnitude of the

By measurement from a scale drawing, or by simple geometry, the distance vector is the length OA

from O to C is 9.5km and the angle to the horizontal is 18.4°. and the direction is from O
towards A.
B 4 km @
A !
3 km i
M ety ol el s [
(0] 5 km A

Figure 1.17 Scale drawing using 1cm=1km.

1.17 A body moves in a circle of radius 3.0m with a constant speed of 6.0ms .
The velocity vector is at all times tangent to the circle. The body starts at
A, proceeds to B and then to C. Find the change in the velocity vector
between A and B and between B and C (Figure 1.18).

- Vs
Figure 1.18

For the velocity change from A to B we have to find the difference vg — va. and for the velocity change from B to
C we need to find vc — vg. The vectors are shown in Figure 1.19.

Va Vc

fe <
=

N

RS
l
1'5&“.7'f




The vector vg — vy is directed south-west and its magnitude is (by the Pythagorean theorem):

Vv + v’ = V6> +6>
=72
=8.49ms!

The vector vc — vg has the same magnitude as g — va but is directed north-west.

Components of a vector

Suppose that we use perpendicular axes x and y and draw vectors on

this x—y plane. We take the origin of the axes as the starting point of the
vector. (Other vectors whose beginning points are not at the origin can
be shifted parallel to themselves until they, too, begin at the origin.) Given
a vector a we define its components along the axes as follows. From
the tip of the vector draw lines parallel to the axes and mark the point on
each axis where the lines intersect the axes (Figure 1.20).

Y y y y
A

: L
y-component A 9: ! 6 ai \ 9/
I |
I | o} 0 0
0 > X 7 — X = : = X
|
|
A A :

Xx-component

Figure 1.20 The components of a vector A and the angle needed to calculate the components.
The angle 8is measured counter-clockwise from the positive x-axis.

The x- and y-components of A are called A, and A,.They are given by:

Exam tip
Ay=Acos The formulas given for the
A,=Asin components of a vector can
always be used, but the angle
where A is the magnitude of the vector and @ is the angle between the must be the one defined in
vector and the positive x-axis. These formulas and the angle 6 defined Figure 1.20, which is sometimes
as shown in Figure 1.20 always give the correct components with the awkward.You can use other
correct signs. But the angle 0 is not always the most convenient. A more more convenient angles, but
convenient angle to work with is ¢, but when using this angle the signs then the formulas for the
have to be put in by hand. This is shown in Worked example 1.18. components may change.

| MEASUREMENT AND UNCERTAINTIES



Worked examples
1.18 Find the components of the vectors in Figure 1.21. The magnitude of a is 12.0 units and that of b is 24.0 units.

y
4

45° 30°

a b

Figure 1.21

Taking the angle from the positive x-axis, the angle for a is §=180°+45°=225° and that for b is
6=270°+ 60° =330°.Thus:

a,=12.0 cos225° b,=24.0cos330°
a,=—8.49 b,=20.8

a,= 12.0sin225° b,=24.05in 330°
gy=—8.49 bi=—=120

But we do not have to use the awkward angles of 225° and 330°. For vector a it is better to use the angle of
¢ =45°. In that case simple trigonometry gives:
o= $12.0 cos45°=—-8.49 and a,=—12.0sin45°=-38.49

put in by hand put in by hand

For vector b it is convenient to use the angle of ¢ =30°, which is the angle the vector makes with the x-axis.
But in this case:

b,=24.0c0s30°=20.8 and b,=—24.05in30°=-12.0

put in by hand




1.19 Find the components of the vector W along the axes shown
in Figure 1.22.

See Figure 1.23. Notice that the angle between the vector W
and the negative y-axis is 6.

Then by simple trigonometry
W,=—Wsin6 (W, is opposite the angle 6 so the sine is used)
W,=—Wcos@ (W, is adjacent to the angle 6 so the cosine is used)

(Both components are along the negative axes, so a minus sign has
been put in by hand.)

Reconstructing a vector from its components

Knowing the components of a vector allows us to reconstruct it (i.e. to
find the magnitude and direction of the vector). Suppose that we are
given that the x- and y-components of a vector are F, and F,.We need
to find the magnitude of the vector F and the angle (6) it makes with the
x-axis (Figure 1.24).The magnitude is found by using the Pythagorean
theorem and the angle by using the definition of tangent.

F,
E= sz + Fyz, 6= arctan—
F,

As an example, consider the vector whose components are F,=4.0 and
F,=3.0.The magnitude of F is:

F=+EF2+F2=+4.0+3.0=+25=50

Figure 1.23

~ 1 MEASUREMENT AND UNCERTAINTIES



y y and the direction is found from:

F 6= 5_ é_36 87°=37°
« N =arctan F. arctan 7 = 36.87°=

Here is another example. We need to find the magnitude and direction of

the vector with components F,=—2.0 and F,=—4.0.The vector lies in

the third quadrant, as shown in Figure 1.25.
Figure 1.25 The vector is in the third

g The magnitude is:
quadrant.

F =yE2+ F2=+(-2.0)>+ (4.0

=20=4.47~45
The direction is found from:

-4
— —Y: _—
@ =arctan F, arctan —5 = arctan 2
The calculator gives §=tan~' 2=63°.This angle is the one shown in
Figure 1.25.

In general, the simplest procedure to find the angle without getting

stuck in trigonometry is to evaluate ¢ =arctan %‘ i.e.ignore the signs
in the components. The calculator will then give you the angle between
the vector and the x-axis, as shown in Figure 1.26.

Adding or subtracting vectors is very easy when we have the

components, as Worked example 1.20 shows.

Fx

F
Figure 1.26 The angle ¢ is given by g =arctan \




Worked example

1.20 Find the sum of the vectors shown in Figure 1.27. F; has magnitude 8.0 units and F, has magnitude
12 units. Their directions are as shown in the diagram.

Fy

42° 28°

X

Figure 1.27 The sum of vectors F; and F; (not to scale).

Find the components of the two vectors:
Fi,=—Fjcos42°
F1,=-5.945

Fly = F1 sin42°
Fi,=5.353

F>,=F,cos28°
F>,=10.595

Fzy = F2 sin 28°
Fp,=5.634

The sum F=F; + F, then has components:

F,= Fi,+ F>, = 4.650
F,=Fy,+F,,=10.987

The magnitude of the sum is therefore:

F=4.6502+10.987>
F=11.9~12

and its direction 1is:

_ (10.987]
@ = arctan 4.65
9=67.1=67°
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Nature of science

For thousands of years, people across the world have used maps to
navigate from one place to another, making use of the ideas of distance
and direction to show the relative positions of places. The concept of
vectors and the algebra used to manipulate them were introduced in the
first half of the 19th century to represent real and complex numbers in a
geometrical way. Mathematicians developed the model and realised that
there were two distinct parts to their directed lines — scalars and vectors.
Scientists and mathematicians saw that this model could be applied to
theoretical physics, and by the middle of the 19th century vectors were
being used to model problems in electricity and magnetism.

Resolving a vector into components and reconstructing the vector
from its components are useful mathematical techniques for dealing with
measurements in three-dimensional space. These mathematical techniques
are invaluable when dealing with physical quantities that have both
magnitude and direction, such as calculating the effect of multiple forces
on an object. In this section you have done this in two dimensions, but
vector algebra can be applied to three dimensions and more.

@ ? Test yourself

35 A body is acted upon by the two forces shown 38 Find the magnitude and direction of the vectors

in the diagram. In each case draw the one force
whose effect on the body is the same as the two

with components:
a A,=-4.0cm, A,=—4.0cm

together. b A,=124km, A,=-158km
¢ A;,=0, A,~-50m
d A;,=80N, A,=0
39 The components of vectors A and B are as
- follows: (A,=2.00, A,=3.00), (B,=—2.00,
= | st s

36

37

Vector A has a magnitude of 12.0 units and
makes an angle of 30° with the positive x-axis.
Vector B has a magnitude of 8.00 units and
makes an angle of 80° with the positive x-axis.
Using a graphical method, find the magnitude
and direction of the vectors:

a A+B bA-B c A—-2B
Repeat the previous problem, this time using
components.

40

B,=5.00). Find the magnitude and direction of
the vectors:

a A b B

d A-B e 24— B
The position vector of a moving object has

c A+B

components (1, =2, r,= 2) initially. After a
certain time the position vector has components
(r.=4, r,=8). Find the displacement vector.



41 The diagram shows the velocity vector of a

42

43

particle moving in a circle with speed 10ms™"

at two separate points. The velocity vector
is tangential to the circle. Find the vector
representing the change in the velocity vector.

final initial
- =~
.7 RN
’ N
, \
7 \
1
I
|‘ 2
\ I
\ ’
3 ’
X .,

In a certain collision, the momentum vector of
a particle changes direction but not magnitude.
Let p be the momentum vector of a particle
suffering an elastic collision and changing
direction by 30°. Find, in terms of p (= |p|), the
magnitude of the vector representing the change
in the momentum vector.

The velocity vector of an object moving on a
circular path has a direction that is tangent to the
path (see diagram).

If the speed (magnitude of velocity) is constant at

4.0ms™, find the change in the velocity vector

as the object moves:

a fromA to B

b from B to C.

¢ What is the change in the velocity vector
from A to C? How is this related to your
answers to a and b?

44 For each diagram, find the components of
the vectors along the axes shown. Take the
magnitude of each vector to be 10.0 units.

45

46

D E

Vector A has a magnitude of 6.00 units

and is directed at 60° to the positive x-axis.
Vector B has a magnitude of 6.00 units and is
directed at 120° to the positive x-axis. Find the
magnitude and direction of vector C such that
A+ B+ C=0. Place the three vectors so that one
begins where the previous ends. What do you
observe?

Plot the following pairs of vectors on a set of
x- and y-axes. The angles given are measured
counter-clockwise from the positive x-axis.
Then, using the algebraic component method,
find their sum in magnitude and direction.

a 12.0N at 20° and 14.0N at 50°

b 15.0N at 15° and 18.0N at 105°

¢ 20.0N at 40° and 15.0N at 310° (i.e. —=50°)
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Exam-style questions

1 What is the equivalent of 80 years in seconds?

A 107 B 10’ c 10" D 10"
2 A book has 500 pages (printed on both sides). The width of the book excluding the covers is 2.5 cm. What is the
approximate width in mm of one sheet of paper?
A 0.01 B 0.1 C 05 D 1.0
3 The speed of sound is approximately 330ms . A storm is 3km away. Approximately how much later after seeing
lightning will thunder be heard?

A 0.1s B 1s C 3s D 10s

4 In which of the following diagrams do the three forces add up to zero?
A B C

5 Three forces act on a body as shown.

Which fourth force is required so that the four forces add up to zero?
A B C D

6 A force of 25N acts normally on a surface of area 5.0 cm® What is the pressure on the surface in Nm~ o

A 5 B 5x10* C 5.0 D 5.0x10*

7 The side of a cube is measured with an uncertainty of 2%. What is the uncertainty in the volume of the cube?

A 2% B 4% C % D 8%




8

9

The ﬂow4 rate Q through a tube of length L and radius r whose ends are kept at a pressure difference AP is given
AP

by Q=" , where ¢is a constant. The percentage uncertainty of which quantity has the largest effect on the

percentage uncertainty in Q?

A r

B AP

C L :
D 1 L and AP each give the same contribution : @

The force of air resistance F on a car depends on speed v through the formula F= av?+ by, where 4 and b are
constants. Which of the following graphs will result in a straight-line graph?

A Fagainst v

B Fagainst 1°
F
C = against v

F 1
D — against —
v v

10 The diagram shows the temperature of a liquid before and after heating,

11

20 25 30 35 60 65 70
it | e = +hH-q+H_4‘:t;:+::,

What is the best estimate for the temperature increase of the liquid?

A (44.010.5) degrees
B (4411.0) degrees
C (44 =£1) degrees

D (44.0%2.0) degrees

\Q’;\

A student wishes to measure the acceleration of free fall by letting a ping pong ball drop from one fixed height
from the floor. He measures the height. Using a stopwatch, he measures the time for the ball to drop to the floor.
He then uses the equation h=% gt* to calculate g.

State and discuss three improvements to the student’s lab experiment. [6]
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12 A man wants to cross a river with a motorboat. The speed of the motorboat in still water is 4.0ms™". The river is

30m wide. There is a current in the river whose speed with respect to the shore is 3.0ms ™.

—_——

P

1
I
I
|
I
I
I
1
current

a The man aims the boat towards P. Determine the distance from P at which he will reach the shore.
b A woman in an identical boat leaves from the same spot as the man but wants to land at P. Determine the

direction in which she has to turn her boat to do this.
¢ Determine which person reaches the shore in the least time.

13 A student investigated the oscillation period, T, of a clamped rod for various loads F applied to the rod.

She graphed the following results.

T/s 1.4

0.8 -

0.6

——

0.4

0.2

| /\ 0.0

F/N

ond a Copy the graph and draw the best-fit line for these data.
&f/‘ b Predict the period of oscillation of the rod when no load is applied to it.
_// ¢ The student claims that T is proportional to F. Explain to the student how the results show she is
/ not correct.
d Determine the absolute uncertainty in T2 for the data point corresponding to F=5.5N.
% y e Another student suspects that T is proportional to F. By drawing a graph of T? against F discuss
whether this student’s claim is correct.
f Calculate the slope of the graph drawn in e, inclﬁding its uncertainty.

- N

[2]

[31
[2]

[2]
(1]

[2]
[2]

[4]
[3]




2.1 Motion

This section 1s an introduction to the basic concepts used in describing
motion. We will begin with motion in a straight line with constant
velocity and then constant acceleration. Knowledge of uniformly
accelerated motion allows analysis of more complicated motions, such as
the motion of projectiles.

Kinematical quantities

We will begin our discussion of motion with straight line motion in one
dimension. This means that the particle that moves is constrained to move
along a straight line. The position of the particle is then described by its
coordinate on the straight line (Figure 2.1a). If the line is horizontal, we
may use the symbol x to represent the coordinate and hence the position.
If the line is vertical, the symbol y is more convenient. In general, for an
arbitrary line we may use a generic name, s, for position. So in Figure 2.1,
x=6m, y=—4m and s=0.

y/m

Figure 2.1 The position of a particle is determined by the coordinate on the number
line.

As the particle moves on the straight line its position changes. In
uniform motion the graph of position against time is a straight line
(Figure 2.2). In equal intervals of time, the position changes by the same
amount. This means that the slope of the position—time graph is constant.
This slope is defined to be the average velocity of the particle:

As

V:E

where As is the change in position.

The average velocity during an interval of time Af is the ratio of
the change in position As during that time interval to At.

Mechanics

Learning objectives

Understand the difference
between distance and
displacement.

Understand the difference
between speed and velocity.
Understand the concept of
acceleration.

Analyse graphs describing
motion.

Solve motion problems using
the equations for constant
acceleration.

Discuss the motion of a
projectile.

Show a qualitative understanding
of the effects of a fluid resistance
force on motion.

Understand the concept of
terminal speed.

0

Figure 2.2 In uniform motion the graph of
position versus time is a straight line.
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(In uniform motion velocity is constant so the term ‘average’ is
unnecessary. The velocity is the same at all times.)

Positive velocity means that the coordinate s that gives the position is
increasing. Negative velocity means that s is decreasing.

Suppose we choose a time interval from t=0 to some arbitrary time ¢
later. Let the position at t=0 (the initial position) be s5; and the position at
time ¢ be s. Then:

S—8

~ =0

v
which can be re-arranged to give:
§=5 Ut

This formula gives, in uniform motion, the position s of the moving
object t seconds after time zero, given that the velocity is v and the initial

position s ;.

Worked example

2.1 Two cyclists, A and B, start moving at the same time. The initial position of A is Om and her velocity is
+20kmh!. The initial position of B is 150km and he cycles at a velocity of —30kmh™!. Determine the time
and position at which they will meet.

The position of A is given by the formula: sa=0+20¢
The position of B is given by the formula: sg=150—230¢

They will meet when they are the same position, i.e. when sa = sg. This implies:

20t=150—230¢
50t=150
t=3.0 hours

The common position is found from either s4 =20X3.0= 60km or sg=150—30%x3.0=60km.

Consider two motions shown in Figure 2.3. In the first, the particle leaves
its initial position s; at —4m and continues to its final position at 16m.
The change in position is called displacement and in this case equals

16 — (—4) =20 m. The distance travelled is the actual length of the path
followed and in this case is also 20m.

P
-

1 1 Il 1 L 1 . — . 2
017 14 T8 15 20 ol Displacement = change in position

|

N
|

N
o+
N
NN
o+
o |

Distance =length of path followed

1 1 1 1 L 1 1 1 1 1 1 1
-

42 0 2 4 6 8 101214161820 s/m

In the second motion, the particle leaves its initial position at 12m, arrives

Figure2.3 A motion inwhichthe particle at position 20m and then comes back to its final position at 4.0m.

changes direction.




The second motion is an example of motion with changing direction.
The change in the position of this particle, i.e. the displacement is
As=sg—5=4.0 —12=—8.0m. But the distance travelled by the particle
(the length of the path) is 8.0m in the outward trip and 16 m on the
return trip, making a total distance of 24 m. So we must be careful
to distinguish distance from displacement. Distance is a scalar but
displacement is a vector. Numerically, they are different if there is a
change of direction, as in this example.

For constant velocity, the graph of velocity versus time gives a
horizontal straight line (Figure 2.4a). An example of this type of motion is
coasting in a straight line on a bicycle on level ground (Figure 2.4b).

Velocity

Figure 2.4 a In uniform motion the graph of velocity versus time is a horizontal
straight line. b This motion is a good approximation to uniform motion.

But we now observe that the area under the graph from =0 to time ¢
is vt. From s=s;+ vt we deduce that this area is the change in position or
the displacement.

Uniformly accelerated motion

In the last section we discussed uniform motion. This means motion in
a straight line with constant velocity. In such motion the graph of
position versus time is a straight line.

In most motions velocity is not constant. In uniformly accelerated
motion the graph of velocity versus time is a non-horizontal straight line
(Figure 2.5).

In equal intervals of time the velocity changes by the same amount. The
slope of the velocity—time graph is constant. This slope is defined to be the
acceleration of the particle:

_Av

A

I Acceleration is the rate of change of velocity.

When the acceleration is positive, the velocity is increasing (Figure 2.6).
Negative acceleration means that v is decreasing. The plane reaches a take-off
speed of 260kmh™ (about 72ms ™) in about 2 seconds, implying an average
acceleration of about 36 ms 2. The distance travelled until take-off is about 72 m.

0 t
Figure 2.5 In uniformly accelerated motion
the graph of velocity versus time is a straight
line with non-zero slope.

- = —
- o - Ll
5 ™ N
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Worked example

Suppose we choose a time interval from =0 to some arbitrary time ¢
later. Let the velocity at t=0 (the initial velocity) be u and the velocity at
time ¢ be v.Then:

v—u

=

a
which can be re-arranged to:
v=utat

For uniformly accelerated motion, this formula gives the velocity v of the
moving object ¢ seconds after time zero, given that the initial velocity is u
and the acceleration is a.

2.2 A particle has initial velocity 12ms ! and moves with a constant acceleration of —=3.0ms 2. Determine the
time at which the particle stops instantaneously.

The particle is getting slower. At some point it will stop instantaneously, i.e. its velocity v will be zero.

We know that v=u+ at. Just substituting values gives:

0=12+(=3.0) X ¢
3.0t=12

Hence t=4.0s.

Defining velocity in non-uniform motion

But how is velocity defined now that it is not constant? We define the
average velocity as before:
__As
g=
At
But since the velocity changes, it has different values at different times.
We would like to have a concept of the velocity at an instant of time,
the instantaneous velocity. We need to make the time interval At very
small. The instantaneous velocity is then defined as:
v=lim—
A0 At
In other words, instantaneous velocity is the average velocity obtained
during an interval of time that is very, very small. In calculus, we learn that

A . . g
ilg%)rst has the following meaning: look at the graph of position s versus

time ¢ shown in Figure 2.7a.As there is uniform acceleration, the graph is
a curve. Choose a point on this curve. Draw the tangent line to the curve
at the point. The slope of the tangent line is the meaning of %i[r_l)%% and
therefore also of velocity.



s/m 30 - B m et ST RN E LR TR EE L T Y B e - S

t/s

Figure 2.7 a In uniformly accelerated motion the graph of position versus time is a curve. b The slope of the tangent at a particular
point gives the velocity at that point.

In Figure 2.7b the tangent is drawn at t=3.0s. We can use this to find
the instantaneous velocity at t=3.0s.The slope of this tangent line is:

25-1.0 -
50-1.0 =6.0ms The slope of the tangent to the
graph of position versus time is
To find the instantaneous velocity at some other instant of time we must velocity

take another tangent and we will find a different instantaneous velocity. At
the point at t=0 it is particularly easy to find the velocity: the tangent is
horizontal and so the velocity is zero.

Instantaneous velocity can be positive or negative. The magnitude of
the instantaneous velocity is known as the instantaneous speed.

We define the average speed to be the total distance travelled divided
by the total time taken. The average velocity is defined as the change in
position (i.e. the displacement) divided by the time taken:

total distance travelled
total time taken

average speed =

displacement

rage velocity =——————
averag ty total time taken

Consider the graph of velocity versus time in Figure 2.8. Imagine
approximating the straight line with a staircase. The area under the
staircase is the change in position since at each step the velocity is
constant. If we make the steps of the staircase smaller and smaller, the area
under the line and the area under the staircase will be indistinguishable

Velocity
and so we have the general result that:

v

The area under the curve in a velocity versus time graph is the
change in position.

From Figure 2.8 this area is (the shape is a trapezoid):

0 Time

As= (” * V)t Figure 2.8 The straight-line graph may be
2 approximated by a staircase.
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But v=u+ at, so this becomes:

ututat
As=(—2——)t:ut+%at2

So we have two formulas for position in the case of uniformly accelerated
motion (recall that As=s—g):

utuv
S:”(T]t
s 1 2
s=s;+ut+zat

We get a final formula if we combine s= 5+ ut+%at2 with v=u+ at. From

. . v—u : ; i
the second equation write t= and substitute in the first equation to get:

v-u 1[1/-1—”)2
gy =t o
a 2\ a

After a bit of uninteresting algebra this becomes:
=1’ +2a(s—s)

This is useful in problems in which no information on time is given.

Graphs of position versus time for uniformly accelerated motion are
parabolas (Figure 2.9). If the parabola ‘holds water’ the acceleration is
positive. If not, the acceleration is negative.

N

S

LN

b

Figure 2.9 Graphs of position s against time t for uniformly accelerated motion. a Positive
acceleration. b Negative acceleration.

Exam tip
The table summarises the meaning of the slope and area for the different motion graphs.
Graph of ... Slope Area
position against time velocity
velocity against time acceleration | change in position
acceleration against time » change in velocity

These formulas can be used for constant acceleration only (if the initial position is zero,

As may be replaced by just s).

v=u-+tat

utv
As=ut+%at2 ' As:( 5 ]t =12+ 2aAs



Worked examples

2.3 A particle has initial velocity 2.00ms ! and acceleration a=4.00ms 2. Find its displacement after 10.0s.

Displacement is the change of position, i.e. As=s—s;. We use the equation:

As= ut+%a12
As=2.00%10.0+2x4.00x 10.02
As=220m

2.4 A car has an initial velocity of u=5.0ms'. After a displacement of 20 m, its velocity becomes 7.0ms ™"

Find the acceleration of the car.

Here, As=s—5;,=20m. So use =12+ 2aAs to find a.
7.0°=5.0+2a% 20
24=40a

Therefore a=0.60ms 2.

2.5 A body has initial velocity 4.0ms™". After 6.0s the velocity is 12ms™'. Determine the displacement of the

body in the 6.0s.

We know u, v and t. We can use:

+
m=f2ﬂt
to get:
A5:(12+4'0]X 6.0
2
As=48m

A slower method would be to use v=u+ at to find the acceleration:
12=4.0+6.0a
= 4=1.333ms?
Then use the value of a to find As:
As=ut+ %atz
As=4.0%6.0+1%1.333 %36

As=48m
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2.6 Two balls start out moving to the right with constant velocities of 5.0ms™' and 4.0ms™". The slow ball starts
first and the other 4.0 later. Determine the position of the balls when they meet.

Let the two balls meet s after the first ball starts moving.
The position of the slow ball is: ~ s=4¢
The position of the fast ball is: 5(t—4)
(The factor t—4 is there because after ts the fast ball has actually been moving for only ¢~ 4 seconds.)
These two positions are equal when the two balls meet, and so:
4t=5t—20
= t=20s

Substituting into the equation for the position of the slow ball, the position where the balls meet is 80m to the
right of the start.

2.7 A particle starts out from the origin with velocity 10ms ™! and continues moving at this velocity for 5.
The velocity is then abruptly reversed to —5 ms ™! and the object moves at this velocity for 10s. For this
motion find:

a the change in position, i.e. the displacement
b the total distance travelled

¢ the average speed

d the average velocity.

The problem is best solved using the velocity—time graph, vims 10

which is shown in Figure 2.10.
5 -

gl

-10 -~
Figure 2.10

a The initial position is zero. Thus, after 5.0 the position is 10 X 5.0m =50m (the area under the first part of the
graph). In the next 10s the displacement changes by —5.0 X 10=—50m (the area under the second part of the
graph). The change in position, i.e. the displacement, is thus 50 =50 =0m.

b Take the initial velocity as moving to the right. The object moved toward the right, stopped and returned to its
starting position (we know this because the displacement was 0). The distance travelled is 50 m in moving to the
right and 50 m coming back, giving a total distance travelled of 100 m.

00m

155

d The average velocity is zero, since the displacement is zero.

=6.7ms ..

¢ The average speed is




2.8 An object with initial velocity 20ms ™! and initial position of —75m experiences a constant acceleration of

—2ms 2 Sketch the position—time graph for this motion for the first 20s.

Use the equation s= ut+%at2. Substituting the values we know, the displacement is given by s=—75 + 20— .

This is the function we must graph. The result is shown in Figure 2.11.

s/m 40 ~—r—rrr773 T g S R

=90

40 -

-60 -

Figure 2.11

At 55 the object reaches the origin and overshoots it. It returns to the origin 10s later (t=15s).The furthest it gets
from the origin is 25 m. The velocity at 55 is 10ms ! and at 155 it is —10ms L. At 10 s the velocity is zero.

A special acceleration

Assuming that we can neglect air resistance and other frictional forces,
an object thrown into the air will experience the acceleration of free
fall while in the air. This is an acceleration caused by the attraction
between the Earth and the body. The magnitude of this acceleration is
denoted by g. Near the surface of the Earth ¢=9.8ms 2. The direction
of this acceleration is always vertically downward. (We will sometimes
approximate ¢ by 10ms 2

Worked example

2.9 An object is thrown vertically upwards with an initial velocity of 20 ms ™
from the edge of a cliff that is 30 m from the sea below, as shown in
Figure 2.12.

Determine:

a the ball’s maximum height

b the time taken for the ball to reach its maximum height
c the time to hit the sea

d the speed with which it hits the sea.

(You may approximate ¢ by 10ms2.)

20ms™

30m

Figure 2.12 A ball is thrown
upwards from the edge of a cliff.
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We have motion on a vertical line so we will use the symbol y for position (Figure 2.13a). We make the vertical

line point upwards. The zero for displacement is the ball’s initial position.

2=u2—2gy.

(The acceleration is a=—g.) At the highest point =0, and so:

a The quickest way to get the answer to this part is to use v

0=202-2x%10y

= y=20m

b At the highest point the object’s velocity is zero. Using v=0 in v=u— gt gives:

0=20—10X¢
_20_
t= 10—2.05

¢ There are many ways to do this. One is to use the displacement
arrow shown in blue in Figure 2.13a.Then when the ball hits the sea,
y=-30m. Now use the formula y=ut— %th to find an equation that
only has the variable :

—30=20Xt—5X%X £
2—4t—6=0

This is a quadratic equation. Using your calculator you can find the two
roots as —1.2s and 5.25. Choose the positive root to find the answer
t=510s

Another way of looking at this is shown in Figure 2.13b. Here we start
at the highest point and make the line along which the ball moves point
downwards. Then, at the top y =0, at the sea y=+50 and g=+10 ms 2,
Now, the initial velocity is zero because we take our initial point to be at

the top.
Using y= ut-l—%gtz with u=0, we find:
50=>5¢

= t=3.2s

y/mA
20ms™
0‘1)
30m
a
0/®
50 m
y/my
b

Figure 2.13 Diagrams for solving
the ball’'s motion. a Displacement
upwards is positive. b The highest
point is the zero of displacement.

This is the time to fall to the sea. It took 2.0s to reach the highest point, so the total time from launch to hitting

the sea is:

2030 —15 s\

d Use v=u—gtand t =5.25 to get v=20—10 X 5.2=-32ms . The speed is then 32ms™".

(If you preferred the diagram in Figure 2.13b for working out part ¢ and you want to continue this method
for part d, then you would write v=u+ gt with t =3.2s and u=0 to get v=10X3.2=+32m )



Projectile motion

Figure 2.14 shows the positions of two objects every 0.2s: the first was
simply allowed to drop vertically from rest, the other was launched
horizontally with no vertical component of velocity. We see that in the
vertical direction, both objects fall the same distance in the same time.

0 20 40 60 80 100
0 ! L L I x/m
. 1 3
1 > |
) ¢
-3 - foile
®
—4
y/m _5J.,,,, i LL B O 0

Figure 2.14 A body dropped from rest and one launched horizontally cover the same
vertical displacement in the same time.

How do we understand this fact? Consider Figure 2.15, in which
a black ball is projected horizontally with velocity v. A blue ball
is allowed to drop vertically from the same height. Figure 2.15a

shows the situation when the balls are released as seen by an observer X

at rest on the ground. But suppose there is an observerY, who moves to

the right with velocity 3 with respect to the ground. What doesY see?
ObserverY sees the black ball moving to the right with velocity % and the
blue ball approaching with velocity —5 (Figure 2.15b)The motions of the
two balls are therefore identical (except for direction). So this observer
will determine that the two bodies reach the ground at the same time.
Since time is absolute in Newtonian physics, the two bodies must reach the
ground at the same time as far as any other observer is concerned as well.

N[<
NI<

.—V> ®— -

a b

Figure 2.15 a A ball projected horizontally and one simply dropped from rest
from the point of view of observer X. ObserverY is moving to the right with

v
velocityi with respect to the ground. b From the point of view of observer Y,
the black and the blue balls have identical motions.




The discussion shows that the motion of a ball that is projected at some
u angle can be analysed by separately looking at the horizontal and the

vertical directions. All we have to do is consider two motions, one in the
H horizontal direction in which there is no acceleration, and another in the
vertical direction in which we have an acceleration, g.

Consider Figure 2.16, where a projectile is launched at an angle 6 to

the horizontal with speed u.The components of the initial velocity vector

are u, = ucos @ and u,=usin@ . At some later time ¢ the components of

Ux velocity are vy and v,. In the x-direction we do not have any acceleration

Figure 2.16 A projectile is launched atan and so:
angle 0 to the horizontal with speed u.

V= Uy
vy =ucosf

In the y-direction the acceleration is —g and so:
vy=u,—gt
vy=usin 6 — gt

The green vector in Figure 2.17a shows the position of the projectile ¢
seconds after launch. The red arrows in Figure 2.17b show the velocity

vectors.
y/m 20 4 ——— e - y/m 204
| P
15 4 ——————- L o - ‘ 15
A 1 ‘ ! 3
10 = —— 10 +-—-
> : [/
5/ — = 5 - T
1
X ! | 1
0 1 1 > | x/m 0 !
0.5 1.0 15 20
-5 4 — 1 S S i e 1 S A -5 4
a b

Figure 2.17 aThe position of the particle is determined if we know the x- and y-components of the position vector.
b The velocity vectors for projectile motion are tangents to the parabolic path.

Bxain Hp We would like to know the x- and y-components of the position

All that we are doing is usin e .
ew g 15 usiig vector. We now use the formula for position. In the x-direction:

the formulas from the previous

section for velocity and X = Uyt

position v=u+at and

s=ut+ %at2 and rewriting them

x=utcost
separately for each direction
x and y. And in the y-direction:
In the x-direction there is y= u),t—%gtz

zero acceleration and in

the y-direction there is an y=utsin0— %th
acceleration —g. ;




Let us collect what we have derived so far. We have four equations with

which we can solve any problem with projectiles, as we will soon see:

vy =1 cosb, vy =ucosf— gt
x-velocity y-velocity
_ N 1 =
x=utcosB, y—utsm@—zgt
\’—V—/
xc-displacement

y-displacement

The equation with ‘squares of speeds’is a bit trickier (carefully review the
following steps). It is:

2

v =u2—2gy

. 2 . - . 3
Since ¥ =v, 2+ vyz and WP=uS+ u,”, and in addition v2=u,2, this is also
equivalent to:

2_ 2_
v, =u,"—2gy

Worked examples

2.10 A body is launched with a speed of 18.0ms ™" at the following angles:

a 30° to the horizontal

b 0° to the horizontal

c 90° to the horizontal.

Find the x- and y-components of the initial velocity in each case.

a vy=ucosb vy=usin@
v, =18.0 X cos 30° v, =18.0 X sin 30°
vy=15.6ms"" 1,=9.00ms "

b v,=18.0ms! V},=Oms—1

c v1,=0 v,=18.0ms™"

2.11 Sketch graphs to show the variation with time of the horizontal and vertical components of velocity for a

projectile launched at some angle above the horizontal.

The graphs are shown in Figure 2.18.

Vy vy

Time \Time

Figure 2.18

Exam tip

Always choose your x- and
y-axes so that the origin is the
point where the launch takes
place.
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2.12 An object is launched horizontally from a height of 20m above the ground with speed 15ms”!. Determine:

a the time at which it will hit the ground
b the horizontal distance travelled

¢ the speed with which it hits the ground.
(Take g=10ms™2)

a The launch is horizontal, i.e. #=0°, and so the formula for vertical displacement is just y = —% o2

The object will hit the ground when y=—20m.

Substituting the values, we find: Exam tip

) This is a basic problem —
—20=-5¢ you must know how to do this!

=i t=2.05
b The horizontal distance is found from x = ut. Substituting values:
x=15%2.0=30m
(Remember that 6=0°).
¢ Use 1»=u*—2gy to get:
»=152—2x10x (—20)

y=25ms |

2.13 An object is launched horizontally with a velocity of 12 ms | Determine:
a the vertical component of velocity after 4.0s
b the x- and y-components of the position vector of the object after 4.0s.

a The launch is again horizontal, i.e. §=0°, so substitute this value in the formulas. The horizontal component of

velocity is 12ms ™" at all times.
From v, = —gt, the vertical component after 4.0s is v, = —20ms .

b The coordinates after time ¢ are:

x = ut and y= —%gtz
x=12.0x4.0 y=-5x%16
x=48m y=—80m

Figure 2.19 shows an object thrown at an angle of §=30° to the

speed is decreasing) and how they move apart on the way down (the

of projectile motion.

horizontal with initial speed 20ms™'. The position of the object is shown
every 0.2s. Note how the dots get closer together as the object rises (the

speed is increasing). It reaches a maximum height of 5.1 m and travels a
horizontal distance of 35 m.The photo in Figure 2.20 show an example
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Figure 2.19 A launch at of § =30° to the horizontal with initial speed 20ms™.

At what point in time does the vertical velocity component become
zero? Setting v, =0 we find:

0=usinf— gt
usin @
t:
K4

The time when the vertical velocity becomes zero is, of course, the time
when the object attains its maximum height. What is this height? Going
back to the equation for the vertical component of displacement, we find
that when:

Figure 2.20 A real example of projectile

motion!
= sin @ 5 V4
g
y is given by:
— usin@sing_l (usin 6)2 Exam tip
Yirax 28 g You should not remember
) these formulas by heart.You
u?sin® 0 .
- > should be able to derive them
o quickly.

What about the maximum displacement in the horizontal direction
(sometimes called the range)? At this point the vertical component of
displacement y is zero. Setting y =0 in the formula for y gives:

0=utsin9—%gt2

0=t (usin —%gt)

and so:

t=0 and
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The first time ¢= 0 is, of course, when the object first starts out. The
second time is what we want — the time in which the range is covered.

Therefore the range is:

_ 2u”sinfcos 6

g

A bit of trigonometry allows us to rewrite this as:

_ u?sin (26)
g

X

One of the identities in trigonometry is 2sin @ cos§=sin20

The maximum value of sin 26 is 1, and this happens when 26=90° (i.e.
6= 45°); in other words, we obtain the maximum range with a launch
angle of 45°. This equation also says that there are two different angles
of launch that give the same range for the same initial speed. These two

angles add up to a right angle (can you see why?).

Worked examples

2.14 A projectile is launched at 32.0° to the horizontal with initial speed 25.0ms '. Determine the maximum
height reached. (Take g=9.81ms %)

The vertical velocity is given by v, =usin6— gt and becomes zero at the highest point. Thus:

t:usiné'
g
:25.0 X sin 32.0°
9.81
t=1.35s

Substituting in the formula for y, y= utsin@—% g, we get:
y=25Xsin32.0° X 1.35 —1x9.81x1.352
y=8.95m



2.15 A projectile is launched horizontally from a height of 42m above the ground. As it hits the ground, the

velocity makes an angle of 55° to the horizontal. Find the initial velocity of launch. (Take g=9.8 ms %)

The time it takes to hit the ground is found from y Z% gt (here §=0° since the launch is horizontal).

The ground is at y=—42m and so:
—42=-1x9.8¢

= L= 20998 s

Using v=u — at, when the projectile hits the ground:
7, =0—9.8%X2 928
v,=—28.69ms”

We know the angle the final velocity makes with the ground (Figure 2.21). Hence:

v
tan55°=|-% 9 =
_28.69
Vx~ tan 55° ki

%
| Yy
tane—'vx‘

v,=20.03=20ms

\
Figure 2.21

Fluid resistance

The discussion of the previous sections has neglected air resistance forces.
In general, whenever a body moves through a fluid (gas or liquid) it
experiences a fluid resistance force that is directed opposite to the
velocity. Typically F= kv for low speeds and F= kv? for high speeds (where
k is a constant). The magnitude of this force increases with increasing speed.

Imagine dropping a body of mass m from some height. Assume that the
force of air resistance on this body is F= kv. Initially, the only force on the
body is its weight, which accelerates it downward. As the speed increases,
the force of air resistance also increases. Eventually, this force will become
equal to the weight and so the acceleration will become zero: the body
will then move at constant speed, called terminal speed, v This speed
can be found from:

mg = kvr
which leads to:

_mg

P = A
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b

Figure 2.22 The variation with time of a
speed and b acceleration in motion with an
air resistance force proportional to speed.

Worked example

Figure 2.22 shows how the speed and acceleration vary for motion with
an air resistance force that is proportional to speed. The speed eventually
becomes the terminal speed and the acceleration becomes zero. The initial
acceleration is g.

The effect of air resistance forces on projectiles is very pronounced.
Figure 2.23 shows the positions of a projectile with (red) and without
(blue) air resistance forces. With air resistance forces the range and
maximum height are smaller and the shape is no longer symmetrical. The
projectile hits the ground with a steeper angle.
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500 ¢ — L ,.. | » e
& | ® 1
[ 4 '. | i
e ° : i L
0 I T . T T T !
0 500 1000 1500 2000 2500 3000 3500
x/m

Figure 2.23 The effect of air resistance on projectile motion.

2.16 The force of air resistance in the motion described by Figure 2.22 is given by F=0.653v. Determine the

mass of the projectile.

The particle is getting slower. At some point it will stop instantaneously, i.e. its velocity v will be zero.

We know that v=u+ at. Just substituting values gives:

0=12+(=3.0)x ¢
3.06=12

Hence t=4.0s.

The terminal speed is 30ms ! and is given by vr =n—;§. Hence:

_kVT
g
g
_0.653%30
W=""98

m=2.0kg



Nature of science

The simple and the complex

Careful observation of motion in the natural world led to the equations
for motion with uniform acceleration along a straight line that we have
used in this section. Thinking about what causes an object to move links
to the idea of forces. However, although the material in this section is
perhaps some of the ‘easiest’ material in your physics course, it does not
enable one to understand the falling of a leaf off a tree. The falling leaf is
complicated because it is acted upon by several forces: its weight, but also
by air resistance forces that constantly vary as the orientation and speed
of the leaf change. In addition, there is wind to consider as well as the fact
that turbulence in air greatly affects the motion of the leaf. So the physics
of the falling leaf is far away from the physics of motion along a straight
line at constant acceleration. But learning the principles of physics in a
simpler context allows its application in more involved situations.

?  Test yourself
Uniform motion

1 A car must be driven a distance of 120km in
2.5h. During the first 1.5h the average speed was
70kmh™". Calculate the average speed for the
remainder of the journey. s/m

2 Draw the position—time graph for an object 20 TH+

displacement—time graph shown.
a Find the average speed for the trip.
b Find the average velocity for the trip.

4 An object moving in a straight line has the

moving in a straight line with a velocity—time
graph as shown below. The initial position is zero.

You do not have to put any numbers on the axes. 04—

t/s

v

Two cyclists, A and B, have displacements 0 km
and 70km, respectively. At =0 they begin to cycle
towards each other with velocities 15kmh ™! and
20kmh™", respectively. At the same time, a fly that
was sitting on A starts flying towards B with a
velocity of 30kmh™". As soon as the fly reaches B
it immediately turns around and flies towards A,
and so on until A and B meet.
a Find the position of the two cyclists and the fly
when all three meet.
b Determine the distance travelled by the fly.

-40

Accelerated motion

5

The initial velocity of a car moving on a straight
road is 2.0ms ™!, It becomes 8.0ms ! after
travelling for 2.0s under constant acceleration.
Find the acceleration.

6 A car accelerates from rest to 28ms ' in 9.0s. Find

the distance it travels.

7 A particle has an initial velocity of 12ms ™" and is

brought to rest over a distance of 45m. Find the
acceleration of the particle.

A particle at the origin has an initial velocity
of =6.0ms™" and moves with an acceleration
of 2.0ms ™2 Determine when its position will
become 16 m.
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9 A plane starting from rest takes 15.0s to take

off after speeding over a distance of 450 m on
the runway with constant acceleration. Find the
take-off velocity.

10 A car is travelling at 40.0ms™ '. The driver sees
an emergency ahead and 0.50s later slams on the

brakes. The deceleration of the car is 4.0ms 2.

a Find the distance travelled before the car stops.

b Calculate the stopping distance if the driver
could apply the brakes instantaneously
without a reaction time.

¢ Calculate the difference in your answers to a
and b.

d Assume now that the car was travelling at
30.0ms ! instead. Without performing any
calculations, state whether the answer to ¢
would now be less than, equal to or larger
than before. Explain your answer.

11 Two balls are dropped from rest from the same
height. One of the balls is dropped 1.00s after
the other.

a Find the distance that separates the two balls
2.00s after the second ball is dropped.

b State what happens to the distance separating
the balls as time goes on.

12 A particle moves in a straight line with an
acceleration that varies with time as shown in
the diagram. Initially the velocity of the object is
2.00ms L.

a Find the maximum velocity reached in the
first 6.00s of this motion.

b Draw a graph of the velocity versus time.

a/ms? 94—

t/s

13 The graph shows the variation of velocity with
time of an object. Find the acceleration at 2.0s.

v/ms™ 8 7 = /
6 i " -

4 - /
2
Y T T
0 1 2 3 4

t/s

14 The graph shows the variation of the position
of a moving object with time. Draw the graph
showing the variation of the velocity of the
object with time.

§

T A}
0 0.5 1 15 2 2.5 3
t/s

15 The graph shows the variation of the position
of a moving object with time. Draw the graph
showing the variation of the velocity of the
object with time.

s

t/s



16

17

18

The graph shows the variation of the position
of a moving object with time. Draw the graph
showing the variation of the velocity of the
object with time.

s

0 0.5 1 1.5 2
t/s

The graph shows the variation of the velocity
of a moving object with time. Draw the graph
showing the variation of the position of the
object with time.

v

0 0.5 1 1.5 2
t/s

The graph shows the variation of the velocity

of a moving object with time. Draw the graph
showing the variation of the position of the object
with time (assuming a zero initial position).

I

\'4

t/s

The graph shows the variation of the velocity
of a moving object with time. Draw the graph
showing the variation of the acceleration of the
object with time.

g

0 0.5 1 1.5 2
t/s

v

Your brand new convertible Ferrari is parked
15m from its garage when it begins to rain.You
do not have time to get the keys, so you begin to
push the car towards the garage. The maximum
acceleration you can give the car is 2.0ms > by
pushing and 3.0ms ™2 by pulling back on the car.
Find the least time it takes to put the car in the
garage. (Assume that the car, as well as the garage,
are point objects.)

The graph shows the displacement versus time of
an object moving in a straight line. Four points
on this graph have been selected.

X

D

e

0 t

a Is the velocity between A and B positive, zero
or negative?

b What can you say about the velocity between
B and C?

c Is the acceleration between A and B positive,
ZE€ro or negative?

d Is the acceleration between C and D positive,
ZETo Or negative?
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22

23

350m

24

Sketch velocity—time sketches (no numbers are

necessary on the axes) for the following motions.

a A ball is dropped from a certain height and
bounces off a hard floor. The speed just before
each impact with the floor is the same as the
speed just after impact. Assume that the time
of contact with the floor is negligibly small.

b A cart slides with negligible friction along a
horizontal air track. When the cart hits the
ends of the air track it reverses direction with
the same speed it had right before impact.
Assume the time of contact of the cart and the
ends of the air track is negligibly small.

¢ A person jumps from a hovering helicopter.
After a few seconds she opens a parachute.
Eventually she will reach a terminal speed and
will then land.

A stone is thrown vertically up from the edge of

a cliff 35.0m from the sea. The initial velocity of

the stone is 8.00ms ™.

l v=8.00ms™

Determine:

a the maximum height of the stone

b the time when it hits the sea

¢ the velocity just before hitting the sea

d the distance the stone covers

e the average speed and the average velocity for
this motion.

A ball is thrown upward from the edge of a cliff

with velocity 20.0ms™". It reaches the bottom of

the cliff 6.0s later.

a Determine the height of the cliff.
b Calculate the speed of the ball as it hits the

ground.

Projectile motion
25 A ball rolls off a table with a horizontal speed of

26

27

28

29

30

2.0ms L. The table is 1.3 m high. Calculate how
far from the table the ball will land.
Two particles are on the same vertical line. They
are thrown horizontally with the same speed,
4.0ms !, from heights of 4.0m and 8.0m.
a Calculate the distance that will separate the
two objects when both land on the ground.
b The particle at the 4.0m height is now
launched with horizontal speed u such that
it lands at the same place as the particle
launched from 8.0 m. Calculate u.
For an object thrown at an angle of 40° to the
horizontal at a speed of 20ms™ !, draw graphs of:
a horizontal velocity against time
b vertical velocity against time
¢ acceleration against time.
Determine the maximum height reached by an
object thrown with speed 24 ms™" at 40° to the
horizontal.
An object is thrown with speed 20.0ms ! at an
angle of 50° to the horizontal. Draw graphs to
show the variation with time of:
a the horizontal position
b the vertical position.
A cruel hunter takes aim horizontally at a chimp
that is hanging from the branch of a tree, as shown
in the diagram.The chimp lets go of the branch
as soon as the hunter pulls the trigger. Treating the
chimp and the bullet as point particles, determine

if the bullet will hit the chimp.




31 A ball is launched from the surface of a planet. b Make a copy of the graph and draw two

Air resistance and other frictional forces are arrows to represent the velocity and the
neglected. The graph shows the position of the acceleration vectors of the ball at t=1.0s.
ball every 0.20s. ¢ The ball is now launched under identical

conditions from the surface of a different

y/m 10 3 —w

5 O T planet where the acceleration due to gravity is
. e ENP o i 3 twice as large. Draw the path of the ball on your
AN graph.

i ! ] T j 32 A stone is thrown with a speed of 20.0ms ! at

6 ! ‘ an angle of 48° to the horizontal from the edge
! ! ‘ ! of a cliff 60.0m above the surface of the sea.
gl ar B mam o a Calculate the velocity with which the stone
W - N ! hits the sea.
2 b Discuss qualitatively the effect of air resistance
i ‘ on your answer to a.

8 : ‘ A ‘ PR Ve W T | 33 a State what is meant by terminal speed.

x/m b A ball is dropped from rest. The force of air

resistance in the ball is proportional to the

a Use this graph to determine:
i the components of the initial velocity of
the ball
ii the angle to the horizontal the ball was
launched at
iii the acceleration of free fall on this planet.

2.2 Forces

This section is an introduction to Newton’s laws of motion. Classical
physics is based to a great extent on these laws. It was once thought that
knowledge of the present state of a system and all forces acting on it
would enable the complete prediction of the state of that system in the
tuture. This classical version of determinism has been modified partly due
to quantum theory and partly due to chaos theory.

Forces and their direction

A force is a vector quantity. It is important that we are able to correctly
identify the direction of forces. In this section we will deal with the
following forces.

ball’s speed. Explain why the ball will reach
terminal speed.

Learning objectives

o Treat bodies as point particles.

e Construct and interpret free-
body force diagrams.

e Apply the equilibrium
condition, XF=0.

e Understand and apply Newton’s
three laws of motion.

e Solve problems involving solid
friction.
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Figure 2.24 The weight of an object is
always directed vertically downward.

m
mg

Figure 2.26 The tension is directed along
the string.

Weight

This force is the result of the gravitational attraction between the mass m
of a body and the mass of the planet on which the body is placed. The
weight of a body is given by the formula:

W=mg

where m is the mass of the body and ¢ is gravitational field strength of the
planet (Subtopic 6.2). The unit of g is newton per kilogram, Nkg . The
gravitational field strength is also known as ‘the acceleration due to gravity’
or the ‘acceleration of free fall’. Therefore the unit of g is also ms 2.

If m is in kg and g in Nkg ! or ms™2 then ¥ is in newtons, N. On
the surface of the Earth, g=9.81 Nkg ' — a number that we will often
approximate by the more convenient 10 Nkg™'. This force is always
directed vertically downward, as shown in Figure 2.24.

The mass of an object is the same everywhere in the universe, but
its weight depends on the location of the body. For example, a mass of
70kg has a weight of 687N on the surface of the Earth (¢=9.81 Nkg )
and a weight of 635N at a height of 250km from the Earth’s surface
(where g=9.07 Nkg ). However, on the surface of Venus, where the
gravitational field strength is only 8.9 Nkg™, the weight is 623 N.

Tension

The force that arises in any body when it is stretched is called tension. A
string that is taut is said to be under tension. The tension force is the result
of electromagnetic interactions between the molecules of the material
making up the string. A tension force in a string is created when two forces
are applied in opposite directions at the ends of the string (Figure 2.25).

T T

- e —————— ——
<3 e S 2

Figure 2.25 A tension force in a string.

To say that there is tension in a string means that an arbitrary point on
the string is acted upon by two forces (the tension T) as shown in Figure
2.26. If the string hangs from a ceiling and a mass m is tied at the other
end, tension develops in the string. At the point of support at the ceiling,
the tension force pulls down on the ceiling and at the point where the
mass is tied the tension acts upwards on the mass.

In most cases we will idealise the string by assuming it is massless. This
does not mean that the string really is massless, but rather that its mass
is so small compared with any other masses in the problem that we can
neglect it. In that case, the tension T is the same at all points on the string.
The direction of the tension force is along the string. Further examples of
tension forces in a string are given in Figure 2.27. A string or rope that is
not taut has zero tension in it.



string over pulley

MM "‘;’/’A?""“ ‘“"’””’{’”}”"“ T string is slack, T=0

Wi

Figure 2.27 More examples of tension forces.

o LT

A spring that is pulled so that its length increases will develop a tension “v - natural length

force inside the spring that will tend to bring the length back to its
original value. Similarly, if it is compressed a tension force will again try to
restore the length of the spring, Figure 2.28. Experiments show that fora ”W“m“mm!lm

] ' _ ) ] tension due to compression
range of extensions of the spring, the tension force is proportional to the

extension, T'= kx, where k is known as the spring constant. This relation
tension due

to extension

LT

Normal reaction contact forces V i

between tension and extension is known as Hooke’s law.

4

If a body touches another body, there is a force of reaction or contact

force between the two bodies. This force is perpendicular to the surface . ) ) )
. . . . . . Figure 2.28 Tension forces in a spring.
of the body exerting the force. Like tension, the origin of this force is also

electromagnetic. In Figure 2.29 we show the reaction force on several
bodies.

Figure 2.29 Examples of reaction forces, R.
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We can understand the existence of contact reaction forces in a simple
model in which atoms are connected by springs. The block pushes down
on the atoms of the table, compressing the springs under the block (Figure
2.30).This creates the normal reaction force on the block.

block

Figure 2.30 A simple model of contact forces.

Drag forces

Drag forces are forces that oppose the motion of a body through a fluid
(a gas or a liquid). Typical examples are the air resistance force experienced

by a car (Figure 2.31) or plane, or the resistance force experienced by a

motion
Figure 2.31 The drag force on a moving car.

steel marble dropped into a jar of honey. Drag forces are directed opposite
to the velocity of the body and in general depend on the speed and shape
of the body. The higher the speed, the higher the drag force.

Upthrust

Any object placed in a fluid experiences an upward force called upthrust
(Figure 2.32). If the upthrust force equals the weight of the body, the body
will float in the fluid. If the upthrust is less than the weight, the body will

upthrust ?

floating sink. Upthrust is caused by the pressure that the fluid exerts on the body.
kAl weight ¢ Frictional forces
O Cinking Frictional forces generally oppose the motion of a body (Figure 2.33).
These forces are also electromagnetic in origin.
y weight
R R
T motion t
Figure 2.32 Upthrust. f E f H F
vw vw
a b

tendency for
motion down
the plane

vw

(4

Figure 2.33 Examples of frictional forces, f. In a there is motion to the right, which is
opposed by a single frictional force that will eventually stop the body. In b the force
accelerating the body is opposed by a frictional force. In ¢ the body does not move;
but it does have a tendency to move down the plane and so a frictional force directed
up the plane opposes this tendency, keeping the body in equilibrium.



Friction arises whenever one body slides over another. In this case we
have dynamic or kinetic friction. Friction also arises whenever there is
a tendency for motion, not necessarily motion itself. For example a block
that rests on an inclined plane has a tendency to slide down the plane, so
there is a force of friction up the plane. Similarly, if you pull on a block
on a level rough road with a small force the block will not move. This
is because a force of friction develops that is equal and opposite to the
pulling force. In this case we have static friction.

In the simple model of matter consisting of atoms connected by springs,
pushing the block to the right results in springs stretching and compressing.
The net result is a force opposing the motion: friction (Figure 2.34).

A more realistic model involves irregularities (called asperities) in the
surfaces which interlock, opposing sliding, as shown in Figure 2.35.

Frictional forces are still not very well understood and there is no
theory of friction that follows directly from the fundamental laws of
physics. However, a number of simple, empirical laws’ of friction have been
discovered. These are not always applicable and are only approximately true,
but they are useful in describing frictional forces in general terms.

These so-called friction laws may be summarised as follows:

o The area of contact between the two surfaces does not affect
the frictional force.
o The force of dynamic friction is equal to:
Ja=uaR
where R is the normal reaction force between the surfaces and
Ud is the coefficient of dynamic friction.
o The force of dynamic friction does not depend on the speed of
sliding.
e The maximum force of static friction that can develop
between two surfaces is given by:
£i= R
where R is the normal reaction force between the surfaces and
s is the coefficient of static friction, with i, > ug.

Figure 2.36 shows how the frictional force f varies with a pulling force
F.The force F pulls on a body on a horizontal rough surface. Initially the
static frictional force matches the pulling force and we have no motion,
Ji= F.When the pulling force exceeds the maximum possible static
friction force, u; R, the frictional force drops abruptly to the dynamic
value of g R and stays at that constant value as the object accelerates.
This is a well-known phenomenon of everyday life: it takes a lot of force
to get a heavy piece of furniture to start moving (you must exceed the
maximum value of the static friction force), but once you get it moving,
pushing it along becomes easier (you are now opposed by the smaller
dynamic friction force).

-®
| B

Figure 2.34 Friction in the simple atoms-
and-springs model of matter.

Figure 2.35 Exaggerated view of how
asperities oppose the sliding of one surface
over the other.

Exam tip

One of the most common
mistakes is to think that u,R

is the formula that gives the
static friction force. This is not
correct. This formula gives
the maximum possible static
friction force that can develop
between two surfaces.

HeR' e mmmmmimime — i

[.ldR ————————————————

accelerated
motion

no motion

Figure 2.36 The variation of the frictional
force f between surfaces with the pulling
force F.
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Worked example

2.17 A brick of weight 50N rests on a horizontal surface. The coefficient of static friction between the brick and
the surface is 0.60 and the coefficient of dynamic friction is 0.20. A horizontal force F is applied to the brick,
its magnitude increasing uniformly from zero. Once the brick starts moving the pulling force no longer
increases. Estimate the net force on the moving brick.

The maximum frictional force that can develop between the brick and the surface is:

=R
which evaluates to:
0.60X50=30NN
So motion takes place when the pulling force is just barely larger than 30 N.
Once motion starts the frictional force will be equal to u4R, i.e.
0.20x50=10N

The net force on the brick in that case will be just larger than 30 —10=20N.

Free-body diagrams

A free-body diagram is a diagram showing the magnitude and direction
of all the forces acting on a chosen body. The body is shown on its own,
free of its surroundings and of any other bodies it may be in contact
with. We treat the body as a point particle, so that all forces act through
the same point. In Figure 2.37 we show three situations in which forces
are acting; below each is the corresponding free-body diagram for the
coloured bodies.

In any mechanics problem, it is important to be able to draw correctly
the free-body diagrams for all the bodies of interest. It is also important
that the length of the arrow representing a given force is proportional to

the magnitude of the force.

T

T

|

b ’ v

Figure 2.37 Free-body diagrams for the coloured bodies.




Newton’s first law of motion

Suppose you have two identical train carriages. Both are equipped with all

the apparatus you need to do physics experiments. One train carriage is
at rest at the train station. The other moves in a straight line with constant
speed — the ride is perfectly smooth, there are no bumps, there is no noise
and there are no windows to look outside. Every physics experiment
conducted in the train at rest will give identical results to similar
experiments made in the moving train. We have no way of determining
whether a carriage is ‘really at rest’ or ‘really moving’. We find it perfectly
natural to believe, correctly, that no net force is present in the case of
the carriage at rest. Therefore no net force is required in the case of the
carriage moving in a straight line with constant speed.

Newton’s first law (with a big help from Galileo) states that:

When the net force on a body is zero, the body will move with
constant velocity (which may be zero).

In effect, Newton’s first law defines what a force is. A force is what
changes a body’s velocity. A force is not what is required to keep
something moving, as Aristotle thought.

Using the law in reverse allows us to conclude that if a body is not
moving with constant velocity (which may mean not moving in a straight
line, or not moving with constant speed, or both) then a force must be
acting on the body:. So, since the Earth revolves around the Sun we know
that a force must be acting on the Earth.

Newton’s first law is also called the law of inertia. Inertia is what keeps

the body in the same state of motion when no forces act on the body.

When a car accelerates forward, the passengers are thrown back into their Figure 2.38 The car was originally travelling

seats because their original state of motion was motion with low speed. at high speed. When it hits the wall the car
If a car brakes abruptly, the passengers are thrown forward (Figure 2.38). stops but the passenger stays in the original
high speed state of motion. This results in the
crash dummy hitting the steering wheel and
the windshield (which is why it is a good idea
of motion (acceleration) is inertia. to have safety belts and air bags).

This implies that a mass tends to stay in the state of motion it was in
before the force acted on it. The reaction of a body to a change in its state

Newton’s third law of motion

Newton’s third law states that if body A exerts a force on body B, then
body B will exert an equal and opposite force on body A. These forces

are known as force pairs. Make sure you understand that these equal and
opposite forces act on different bodies. Thus, you cannot use this law to
claim that it is impossible to ever have a net force on a body because for
every force on it there is also an equal and opposite force. Here are a few
examples of this law:

e You stand on roller skates facing a wall. You push on the wall and you

move away from it. This is because you exerted a force on the wall and . )
Figure 2.39 The girl pushes on the wall

so the wall pushes on her in the opposite
you move away (Figure 2.39). direction.

in turn the wall exerted an equal and opposite force on you, making
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Figure 2.40 The familiar bathroom scales
do not measure mass. They measure the
force that you exert on the scales. This force
is equal to the weight only when the scales
are at rest.

Figure 2.41 The upward force on the rotor
is due to the force the rotor exerts on the air

downward.

6.0
8ON R
e
—_—
12N

b

Figure 2.43 The net force is found by plain
addition and/or subtraction when the forces
are in the same or opposite direction.

e You step on the bathroom scales. The scales exert an upward force on
you and so you exert a downward force on the scales. This is the force
shown on the scales (Figure 2.40).

o A helicopter hovers in air (Figure 2.41). Its rotors exert a force
downward on the air. Thus, the air exerts the upward force on the
helicopter that keeps it from falling.

e A book of mass 2kg is allowed to fall feely. The Earth exerts a force on
the book, namely the weight of the book of about 20 N.Thus, the book
exerts an equal and opposite force on the Earth — a force upward equal
to 20IN.

You must be careful with situations in which two forces are equal and

opposite; they do not always have to do with the third law. For example,

a block of mass 3kg resting on a horizontal table has two forces acting on

it — its weight of about 30N and the normal reaction force from the table

that is also 30 N. These two forces are equal and opposite, but they are
acting on the same body and so have nothing to do with Newton’s third
law. (We have seen in the last bullet point above the force that pairs with

the weight of the block. The force that pairs with the reaction force is a

downward force on the table.)

Newton’s third law also applies to cases where there is no contact
between the bodies. Examples are the electric force between two
electrically charged particles or the gravitational force between any two
massive particles. These forces must be equal and opposite (Figure 2.42).

Figure 2.42 The two charges and the two masses are different, but the forces are
equal and opposite.

Equilibrium

Equilibrium of a point particle means that the net force on the particle
is zero. The net force on a particle is the one single force whose effect is
the same as the combined effect of individual forces acting on the particle.
We denote it by ZF. Finding the net force is easy when the forces are in
the same or opposite directions (Figure 2.43).

In Figure 2.43a, the net force is (if we take the direction to the right
to be positive) ZF=12+6.0—8.0=10N.This is positive, indicating a
direction to the right.

In Figure 2.43b, the net force is (we take the direction upward to be
positive) ZF=5.0+6.0 —4.0 —8.0=—1.0 N.The negative sign indicates a
direction vertically down.



Worked example

2.18 Determine the magnitude of the force F in Figure 2.44, given that the block is in equilibrium.

6.0N
15N e
<% —_—F
—e
6.0N
Figure 2.44

For equilibrium, XF =0, and so:
6.0+F+6.0—-15=0
This gives F=3.0N.

Solving equilibrium problems

When there are angles between the various forces, solving equilibrium

problems will involve finding components of forces using vector methods.

We choose a set of axes whose origin is the body in question and find the
components of all the forces on the body. Figure 2.45 shows three forces
acting at the same point. We have equilibrium, which means the net force
acting at the point is zero. We need to find the unknown magnitude and
direction of force Fj.This situation could represent three people pulling
on three ropes that are tied at a point.

Finding components along the horizontal (x) and vertical (y) directions
for the known forces F, and F;, we have:

Ey= 0

Fpy==22.0N (add minus sign to show the
direction)

F3,=-29.0cos37°=-23.16 N (add minus sign to show the
direction)

F3,=29.05ins37°=17.45N
Equilibrium demands that 2F, =0 and ZF,=0.
2F,=0 implies:
F,+0-23.16=0 = F;,=23.16 N
ZF,=0 implies:
F1,—22.0+17.45=0 = F,=4.55N

Therefore, F; =23.16%+4.55>=23.6 N

. _F1}’ _ _1( 455 )_ o
The angle is found from tan = Fi, = f=tan 3.16) " 111

F3=29.0N

F

37° \ﬁ/ .
. 4

X

y F2=220N

F

F

Fs

Figure 2.45 Force diagram of three forces in
equilibrium pulling a common point. Notice

that the three vectors representing the three
forces form a triangle.

Exam tip

If we know the x- and
y-components of a force we
can find the magnitude of the

force from F=+E2+ Fyz.
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Worked example

2.19 A body of weight 98.0IN hangs from two strings that are attached to the ceiling as shown in Figure 2.46.
Determine the tension in each string.

Figure 2.46

The three forces acting on the body are as shown, with T'and S being the tensions in the two strings and W its
weight. Taking components about horizontal and vertical axes through the body we find:

T,=—Tcos30° (add minus sign to show the direction) 8= Scos50° W,=0
&= Esin 308 S, = Ssin50° W,=—-98.0N
Equilibrium thus demands XF,=0 and XF,=0.
2F, =0 implies:
—Tcos30°+ Scos50°=0
2F,=0 implies:
T'sin30°+ Ssin50°—98.0=0
From the first equation we find that:

cos30°
cos 50°

S= =1.3473xT

Substituting this in the second equation gives:
T(sin 30° + 1.3473sin50°) = 98

which solves to give:
T=63.96=64.0N

Hence S=1.3473x63.96=86.17=86.2N.



2.20 A mass of 125g is attached to a spring of spring constant k=58 Nm™! that is hanging vertically.
a Find the extension of the spring.

b If the mass and the spring are placed on the Moon, will there be any change in the extension of the
spring?

a The forces on the hanging mass are its weight and the tension in the spring. By Hooke’s law, the tension in the
spring is kx, where x is the extension and k the spring constant. Since we have equilibrium, the two forces are
equal in magnitude. Therefore:

kx=mg
=103
G

0.125% 10 =
X="pg (taking ¢=10Nkg 1)
x=0.022m

The extension is 2.2 cm.

b The extension will be less, since the acceleration of gravity is less.

Newton'’s second law of motion

Newton’s second law states that:

The net force on a body of constant mass is proportional to that
body’s acceleration and is in the same direction as the acceleration.

Mathematically:
F=ma

where the constant of proportionality, m, is the mass of the body.
Figure 2.47 shows the net force on a freely falling body, which happens
to be its weight, /= mg. By Newton’s second law, the net force equals the

mass times the acceleration, and so:

mg=ma

a=yg

That is, the acceleration of the freely falling body is exactly ¢. Experiments
going back to Galileo show that indeed all bodies fall with the same

_ ; ; ; Figure 2.47 A mass falling to the ground
acceleration in a vacuum (the acceleration of free fall) irrespective of g 3 g

. . . . . ] acted upon by gravity.
their density, their mass, their shape and the material from which they

are made. Look for David Scott’s demonstration dropping a hammer and
feather on the Moon in Apollo 15’ mission in 1971.You can do the same
demonstration without going to the Moon by placing a hammer and a
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feather on a book and dropping the book. If the heavy and
the light object fell with different accelerations the one
with the smaller acceleration would lift off the book — but
it doesn’t.

Exam tip
To solve an ‘F= ma’ problem:
e Make a diagram.

o Identify the forces on the body of interest. The equation F=ma defines the unit of force, the

newton (IN). One newton is the force required to accelerate
a mass of 1kg by 1ms 2 in the direction of the force.

It is important to realise that the force in the second law
is the net force ZF on the body.

e Find the net force on each body, taking the
direction of acceleration to be the positive
direction.

o Apply Fpe=ma to each body.

Worked examples

2.21 A man of mass m=70kg stands on the floor of an elevator. Find the force of reaction he experiences from
the elevator floor when the elevator:

a is standing still
il

2

b moves up at constant speed 3.0ms"
¢ moves up with acceleration 4.0ms™

d moves down with acceleration 4.0ms ™2

e moves down, slowing down with deceleration 4.0ms 2.

Take g=10ms 2.

Two forces act on the man: his weight mg vertically down and the reaction force R from the floor vertically up.
a There is no acceleration and so by Newton’s second law the net force on the man must be zero. Hence:

R=mg
R=7.0x10°N

b There is no acceleration and so again:

R=mg
R=70%10°P N

¢ There is acceleration upwards. The net force in the direction of the acceleration is given by:

XF=R—mg
So: ma=R—mg
= R=mg+ma
R=700N+280IN
R=9.8x10°N

d We again have acceleration, but this time in the downward direction. We need to find the net force in the
direction of the acceleration:

2F=mg—R

So: ma=mg—R

= R=mg—ma
R=700N—-280N
R=42x10°N

e The deceleration is equivalent to an upward acceleration, so this case is identical to part c.



2.22 A man of mass 70kg is standing in an elevator. The elevator is moving upward at a speed of 3.0ms " The

elevator comes to rest in a time of 2.0s. Determine the reaction force on the man from the elevator floor
during the period of deceleration.

Use a=v —'Lti to find the acceleration experienced by the man:
3.0 2
a=—m=—1.5ms -

The minus sign shows that this acceleration is directed in the downward direction. So we must find the net force
in the down direction, which is ZF=mg— R. (We then use the magnitude of the accelerations, as the form of the
equation takes care of the direction.)

ma=mg—R

= R=mg—ma
R=700-105
R=595=6.0x10°N

If, instead, the man was moving downward and then decelerated to rest, the acceleration is directed upward and
YF=R—myg.

So: ma=R—mg

= R=mg+ma
R=700+105
R=805=8.0 X 10*°N

Both cases are easily experienced in daily life. When the elevator goes up and then stops we feel ‘lighter’ during
the deceleration period. When going down and about to stop, we feel ‘heavier’ during the deceleration period.
The feeling of ‘lightness’ or ‘heaviness’ has to do with the reaction force we feel from the floor.
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2.23 a Two blocks of mass 4.0kg and 6.0 kg are joined by a string and rest on a frictionless horizontal table
(Figure 2.48). A force of 100N is applied horizontally on one of the blocks. Find the acceleration of each
block and the tension in the string.

b The 4.0kg block is now placed on top of the other block. The coefficient of static friction between the
two blocks is 0.45.The bottom block is pulled with a horizontal force F. Calculate the magnitude of the
maximum force F that will result in both blocks moving together without slipping.

4.0 kg 6.0 kg

T T 100 N
= = =

Ry free-body diagrams

mg

ir T T 100 N
I
:

— —
Figure 2.48

a This can be done in two ways.

Method 1
Let the acceleration of the system be a. The net horizontal force on the 6.0kg mass is 100 — T and the net
horizontal force on the 4.0 kg mass is just T.Thus, applying Newton’s second law separately on each mass:

100— T=6.0a
T=4.0a
Solving for a (by adding the two equations) gives:
100=10a
= a=10ms™>
The tension in the string is therefore:
T=4.0%x10
T=40N

Note: The free-body diagram makes it clear that the 100N force acts only on the body to the right. It is a
common mistake to say that the body to the left is also acted upon by the 100N force.




law on the 4.0kg body gives:
T=4a=40N

E
the acceleration will be a= 10 (Figure 2.49a).

+40N

combined mass = 10 kg

| B3

f=uR=0.45x40=18N

F E
E=4.5ms 2

= F=45N

4ONY

So the acceleration of the small block is:

We may consider the two bodies as one of mass 10kg. The net force on the body is 100 N. Note that the
tensions are irrelevant now since they cancel out. (They did not in Method 1, as they acted on different bodies.
Now they act on the same body. They are now internal forces and these are irrelevant.)

Applying Newton’s second law on the single body we have:

But to find the tension we must break up the combined body into the original two bodies. Newton’s second

(the tension on this block is the net force on the block). If we used the other block, we would see that the net
force on it is 100 — T and so:

100—T=6X10=60N
This gives T=40N, as before.

b If the blocks move together they must have the same acceleration. Treating the two blocks as one (of mass 10kg),

free-body diagrams

100 N

60 N

Figure 2.49 aTreating the blocks as one. b The free-body diagram for each block.

The forces on each block are shown in Figure 2.49b.The force pushing the smaller block forward is the
frictional force f that develops between the blocks. The maximum value f can take is:
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2.24 Two masses of m=4.0kg and M= 6.0kg are joined together by a string that passes over a pulley (this
arrangement is known as Atwood’s machine). The masses are held stationary and suddenly released.
Determine the acceleration of each mass.

Intuition tells us that the larger mass will start moving downward and the small mass will go up. So if we say that
the larger mass’s acceleration is a, then the other mass’s acceleration will also be a in magnitude but, of course, in
the opposite direction. The two accelerations are the same because the string cannot be extended.

Method 1
The forces on each mass are weight mg and tension T
on m and weight Mg and tension T on M (Figure 2.50). }( i

Newton’s second law applied to each mass gives:

|

f

|
T-mg=ma (1) ‘T E
Mg—T=Ma (2) r|

Note these equations carefully. Each says that the net force

on the mass in question is equal to that mass times that mass’s 1 g

acceleration. In the first equation, we find the net force in the

upward direction, because that is the direction of acceleration.
In the second, we find the net force in downward direction,
since that is the direction of acceleration in that case. We want Mg Mg
to find the acceleration, so we simply add these two equations Figure 2.50

to find:

Mg—mg= (m~+ M)a
Hence:

M—m

=M md

(Note that if M >> m the acceleration tends to g. Can you think why this is?) This shows clearly that if the two
masses are equal, then there is no acceleration. This is a convenient method for measuring g. Atwood’s machine
effectively ‘slows down’ g so the falling mass has a much smaller acceleration from which g can then be determined.

Putting in the numbers for our example we find a=2.0ms ™.

Having found the acceleration we may, if we wish, also find the tension in the string, T . Putting the value for a in
formula (1) we find:

M-—m
= m(M+ m)g+ mg

Mm )

T:2(M+m &

(If M >> m the tension tends to 2mg. Can you see why?)



Method 2
We treat the two masses as one body and apply Newton’s second law on this body

(but this is trickier than in the previous example) — see Figure 2.51.

In this case the net force is Mg— mg and, since this force acts on a body of mass
M+ m, the acceleration is found as before from F=mass X acceleration. Note that
the tension T does not appear, as it is now an internal force.

Mg

Figure 2.51

2.25 In Figure 2.52, a block of mass M is connected to a smaller mass m through a string that goes over a pulley.
Ignoring friction, find the acceleration of each mass and the tension in the string.

i i
i T
. |
17 g r
mg
Figure 2.52
Method 1

The forces are shown in Figure 2.52. The acceleration must be the same magnitude for both masses, but the larger
mass accelerates horizontally and the smaller mass accelerates vertically downwards. The free-body diagrams on the
right show the forces on the individual masses. Taking each mass separately:

mg— T=ma (small mass accelerating downwards)
T=Ma (large mass accelerating horizontally to the right)

Adding the two equations, we get:

mg=ma~+ Ma
"
= “M+m

(If M > m the acceleration tends to zero. Why?)

From the expression for T for the larger mass, we have:

— g Mmg
T=Ma M+m
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Method 2
Treating the two bodies as one results in the situation shown in Figure 2.53.

_________________

V Mg

Figure 2.53

The net horizontal force on the combined mass M+ m is mg. Hence:

mg= (M+ m)a
Y
= a_M+m

The tension can then be found as before.

2.26 A block of mass 2.5kg is held on a rough inclined plane,

a The forces on the block just before slipping are shown in Figure 2.55.

as shown in Figure 2.54. When released, the block stays
in place. The angle of the incline is slowly increased

and when the angle becomes slightly larger than 38°
the block begins to slip down the plane.

Figure 2.54

a Calculate the coefficient of static friction between the block and the inclined plane.

b The angle of the incline is increased to 49°. The coefficient of dynamic friction between the block and the
incline is 0.26. Calculate the force that must be applied to the block along the plane so it moves up the

plane with an acceleration of 1.2ms 2.

The frictional force is fand the normal reaction is R. The components
of the weight are mgsin@ down the plane and mgcos@ at right angles

to the plane.

mg cos 6

Figure 2.55

Because the block is about to slip, the frictional force is the maximum possible static frictional force and so
f=pR. Equilibrium demands that:

mgsin@=f

mgcos@=R




Divide the first equation by the second to get:

f

tan¢9=§

Now use the fact that f= R to find:

R
tan@= ,uR
tan 6=

Hence y;=tan#=tan38°=0.78

b Let F be the required force up the plane. The net force up the plane is F —mgsin 49° — f3, since the force of
friction now opposes F.

We have that: Exam tip
Notice that for a block on
a frictionless inclined plane
Therefore: the net force down the

Ja= usR = pgmg cos 49°

‘ lae ; ; .
B R0° S 40P S plane is g 0, lead.mg to
an acceleration of gsin 6,

F=ma+ mgsin49° + ugmg cos 49° independent of the mass.
Substituting values:

F=2.5X1.2+2.5X9.8X5in49°+0.26 X 2.5 X 9.8 cos 49°

F=25.67=26N

Nature of science

Physics and mathematics

In formulating his laws of motion, published in 1687 in Philosophice
Naturalis Principia Mathematica, Newton used mathematics to show how
the work of earlier scientists could be applied to forces and motion in the
real world. Newton’s second law (for particle of constant mass) is written
as F=ma. In this form, this equation does not seem particularly powerful.
However, using calculus, Newton showed that acceleration is given by:

T ar Newton used a flash
The second law then becomes: of inspiration, triggered
B F by observing an apple
aE m 0 falling from a tree, to relate the

motion of planets to that of

This is a differential equation that can be solved to give the actual path the apple, leading to his law of

that the particle will move on under the action of thle force. Newton gravitation (which you will meet
showed that if the force depends on position as F «<—, then the motion in Topic 6).

has to be along a conic section (ellipse, circle, etc.).
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@ ? Test yourself

Equilibrium 38 A mass hangs attached to three strings, as shown

34 A block rests on a rough table and is connected in the diagram. On a copy of the diagram, draw

by a string that goes over a pulley to a second the forces on:

hanging block, as shown in the diagram. Draw a the hanging mass

the forces on each body. b the point where the strings join.

/

.

35 A bead rolls on the surface of a sphere, having

On a copy of the diagram, draw the forces on
the bead:
a at the top

v
%
!
%
started from the top, as shown in the diagram. ig

39 Find the net force on each of the bodies shown

b at the point where it is about to leave the . . .
P in the diagrams.The only forces acting are the

surface of the sphere. . L o a
p ones shown. Indicate direction by ‘right’, ‘left’,

Q ‘up’ and ‘down’.
P T 8N
. 12N
l ) -
! j e
X | 18N el
it B
36 Look at the diagram. State in which case the N 2N . 10N
tension in the string is largest. S ™ - E———
10N
C D
26N
50.0N
50.0N 50.0N
o ' o 4N V * 6N * 6N

37 A spring is compressed by a certain distance and E

a mass is attached to its right end, as shown in

the diagram.The mass rests on a rough table. On 40 Find the magnitude and direction of the net

a copy of the diagram, draw the forces acting on force in the diagram.

the mass.
20N 20N
RURHEHAHALY
NV
T : a5\ /a5°




41

42

43

44

Explain why is it impossible for a mass to hang
attached to two horizontal strings as shown in
the diagram.

A mass is hanging from a string that is attached
to the ceiling. A second piece of string (identical
to the first) hangs from the lower end of the
mass (see diagram).

et —

1
|

|

State and explain which string will break if:
a the bottom string is slowly pulled with ever
increasing force

b the bottom string is very abruptly pulled down.

A mass of 2.00kg rests on a rough horizontal
table. The coefficient of static friction between
the block and the table is 0.60. The block is
attached to a hanging mass by a string that goes
over a smooth pulley, as shown in the diagram.
Determine the largest mass that can hang in this
way without forcing the block to slide.

A girl tries to lift a suitcase of weight 220N by
pulling upwards on it with a force of 140N.The
suitcase does not move. Calculate the reaction
force from the floor on the suitcase.

45 A block of mass 15.0kg rests on a horizontal
table. A force of 50.0 N is applied vertically
downward on the block. Calculate the force that
the block exerts on the table.

46 A block of mass M is connected with a string
to a smaller block of mass m.The big block is
resting on a smooth inclined plane as shown in
the diagram. Determine the angle of the plane in
terms of M and m in order to have equilibrium.

Accelerated motion

47 Describe under what circumstances a constant
force would result in a an increasing and b a
decreasing acceleration on a body.

48 A car of mass 1400 kg is on a muddy road. If the
force from the engine pushing the car forward
exceeds 600N, the wheels slip (i.e. they rotate
without rolling). Estimate the car’s maximum
acceleration on this road.

49 A man of mass m stands in an elevator.

a Find the reaction force from the elevator floor
on the man when:
i the elevator is standing still
ii the elevator moves up at constant speed v
iii the elevator accelerates down with
acceleration a
iv the elevator accelerates down with
acceleration a=g.
b What happens when a > g?

50 Get in an elevator and stretch out your arm
holding your heavy physics book. Press the
button to go up. Describe and explain what is
happening to your stretched arm. Repeat as the
elevator comes to a stop at the top floor. What
happens when you press the button to go down
and what happens when the elevator again stops?
Explain your observations carefully using the
second law of motion.
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51 The diagram shows a person in an elevator pulling 52 A massless string has the same tension

on a rope that goes over a pulley and is attached throughout its length. Suggest why.

to the top of the elevator. The mass of the elevator 53 a Calculate the tension in the string joining the

is 30.0kg and that of the person is 70kg. two masses in the diagram.

a On a copy of the diagram, draw the forces on b If the position of the masses is interchanged,
the person. will the tension change?

b Draw the forces on the elevator.

¢ The elevator accelerates upwards at 0.50ms > 30.0kg | Frniih
Find the reaction force on the person from @ — M
the elevator floor. B TR S

d The force the person exerts on the elevator 54 A mass of 3.0kg is acted upon by three forces
floor is 300 N. Find the acceleration of the of 4.0N, 6.0N and 9.0N and is in equilibrium.
elevator (¢=10 m572)~ Convince yourself that these forces can indeed
———.. be in equilibrium.The 9.0N force is suddenly

)

removed. Determine the acceleration of the mass.

=
=

Seae=

o

Learning objectives 2.3 Work, energy and power

Thi i i £ i 1 1CS.
« Understand the concepts of his section deals with energy, one of the most basic concepts in physics

A s e . i inci ener rvati n
feisiehie) pravitationsl potential We introduce the principle of gy conservation and learn how to

: : apply it ious situations. We define kineti tenti ergy, work
and elastic potential energy. pply it to various situatio de ic and potential energy, wo

S W —— done and power developed.

energy transferred.

Energy

e Understand power as the rate of

energy transfer. Energy is a concept that we all have an intuitive understanding of.

e Understand and apply the Chemical energy derived from food keeps us alive. Chemical energy from
principle of energy conservation. gasoline powers our cars. Electrical energy keeps our computers going.

o Calculate the efficiency in Nuclear fusion energy produces light and heat in the Sun that sustains life
energy transfers. on Earth. And so on.Very many experiments, from the subatomic to the

cosmic scale, appear to be consistent with the principle of conservation
of energy that states that energy is not created or destroyed but is only
transformed from one form into another. This means that any change in
the energy of a system must be accompanied by a change in the energy of
the surroundings of the system such that:

AEsystem + AEsurroundings =D




In other words, if the system’s energy increases, the energy of the
surroundings must decrease by the same amount and vice-versa.

The energy of the system may change as a result of interactions
with its surroundings (Figure 2.56). These interactions mainly involve
work done W by the surroundings and/or the transfer of thermal
energy (heat) Q, to or from the surroundings. But there are many other
interactions between a system and its surroundings. For example, waves
of many kinds may transfer energy to the system (the Sun heats the
Barth); gasoline, a chemical fuel, may be added to the system, increasing its
energy; wind incident on the blades of a windmill will generate electrical
energy as a generator is made to turn, etc. So:

AEgyem = W+ Q+ other transfers

But in this section we will deal with Q=0 and no other transfers so we
must understand and use the relation:

AE=W

(we dropped the subscript in Egyem)- To do so, we need to define what we
mean by work done and what exactly we mean by E, the total energy of
the system.

Work done by a force

We first consider the definition of work done by a constant force

for motion in a straight line. By constant force we mean a force that is
constant in magnitude as well as in direction. Figure 2.57 shows a block
that is displaced along a straight line. The distance travelled by the body
is s. The force makes an angle  with the displacement.

Figure 2.57 A force moving its point of application performs work.

The force acts on the body all the time as it moves. The work done by
the force is defined as:

W= Fscos@
But Fcos@ i1s the component of the force in the direction of the

displacement and so:

The work done by a force is the product of the force in the
direction of the displacement times the distance travelled.

(Equivalently, since scos@ is the distance travelled in the direction of the
force, work may also be defined as the product of the force time, the
distance travelled in the direction of the force.)

heat supplied

work done

surroundings

Figure 2.56 The total energy of a system
may change as a result of interactions with its
surroundings.
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The cosine here can be positive, negative or zero; thus work can be
positive, negative or zero. We will see what that means shortly.
The unit of work is the joule. One joule is the work done by a force of

1N when it moves a body a distance of 1 m in the direction of the force.
1J=1Nm.

Worked examples

2.27 A mass is being pulled along a level road by a rope attached to it in such a way that the rope makes an angle
of 34° with the horizontal. The force in the rope is 24 N. Calculate the work done by this force in moving
the mass a distance of 8.0 m along the level road.

We just have to apply the formula for work done:
W= Fscost

Substituting the values from the question:
W=24x8.0X cos34°
W=160]

2.28 A car with its engine off moves on a horizontal level road. A constant force of 620N opposes the motion of
the car. The car comes to rest after 84 m. Calculate the work done on the car by the opposing force.

We again apply the formula for work done, but now we have to realise that §=180°. So:
W=620 %X 84 X cos 180°
W=—52Lk]

2.29 You stand on roller skates facing a wall. You push against the wall and you move away. Discuss whether the
force exerted by the wall on you performed any work.

No work was done because there is no displacement. You moved but the point where the force is applied never moved.

Varying force and curved path

You will meet situations where the force is not constant in magnitude
or direction and the path is not a straight line. To find the work done we
must break up the curved path into very many small straight segments
in a way that approximates the curved path (Figure 2.58). Think of these
segments as the dashes that make up the curve when it is drawn as a
dashed line. The large arrowed segments at the bottom of Figure 2.58
show this more clearly. The total work done is the sum of the work done
on each segment of the path.



We assume that along each segment the force is constant. The work

done on the kth segment is just Fjs,cos 8. So the work done on all the
segments is found by adding up the work done on individual segments, i.e.

W= E Fpspcos @,
k=1

Do not be too worried about this formula. You will not be asked to use 1 ,
it, but it can help you to understand one very special and important case: P /,’,
the work done in circular motion. We will learn in Topic 6 that in circular e T g e
motion there must be a force directed towards the centre of the circle. ///
This is called the centripetal force. ’ 1

Figure 2.59 shows the forces pointing towards the centre of the circular 3

path. When we break the circular path into straight segments the angle 1 L{ <~

between the force and the segment is always a right angle. This means that ’
" " k

work done along each segment is zero because cos 90°=0. So for circular N

motion the total work done by the centripetal force is zero.

- =~

» ~ Figure 2.58 The curved path followed by a
, . particle is shown as a dashed line, and then
’ \ as larger segments, s. The green arrows show
the varying size and direction of the force
acting on the particle as it moves.

4
L

forces point towards the centre forces are perpendicular to each segment

Figure 2.59 The work done by the centripetal force is zero.

In practice, when the force varies in magnitude but is constant in
direction, we will be given a graph of how the force varies with distance
travelled. The work done can be found from the area under the graph. For
the motion shown in Figure 2.60, the work done in moving a distance of
4.0m is given by the area of the shaded trapezoid:

2.0+10
W=="5—x4.0=24]
F/N 12 - r
10 4 ‘ - L
6 T THH : :
/ o area=a+bxh
4
‘ b
2 - i
a
0 1
0 1 2 3 4 h

Figure 2.60 The work done is the area under the graph. The area of a trapezoid is half the sum
of the parallel sides multiplied by the perpendicular distance between them.
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A /

—— area=FAs

width As S

Figure 2.61 The area under the graph is the
sum of all the rectangles FAs .

The work done by a force is the area under the graph that shows
the variation of the magnitude of the force with distance travelled.

How do we know that the area is the work done? For a varying force,
consider a very small distance As (Figure 2.61). Because As is so small we
may assume that the force does not vary during this distance. The work
done is then FAs and is the area of the rectangle shown. For the total
work we have to add the area of many rectangles under the curve. The
sum is the area under the curve.

Work done by a force on a particle

Imagine a net force F that acts on a particle of mass m.The force produces
an acceleration a given by:

a=—
m

Let the initial speed of the particle be u. Because we have acceleration, the
speed will change. Let the speed be v after travelling a distance s. We know
from kinematics that:

v*=u*+2as
Substituting for the acceleration, this becomes:
F
=P +2=
m

We can rewrite this as:

1 1
Fs=5mv* —3mu”
We interpret this as follows: Fs is the work done on the particle by the
net force. The quantity % X mass X speed? is the energy the particle has due
to its motion, called kinetic energy. For speed v, kinetic energy Ex is

defined as:

1
I Ex = ;mv*

In our example, the initial kinetic energy of the particle is %muz and the

kinetic energy after travelling distance s is %mvz.The result says that the

work done has gone into the change in the kinetic energy of the particle.
‘We can write this as:

Wnet = AE‘K

where W, is the net work done and AEk is the change in kinetic energy.
This is known as the work—kinetic energy relation.

We can think of the work done as energy transferred. In this example,
the work done has transferred energy to the particle by increasing its
kinetic energy.




Worked example

2.30 A block of mass 2.5kg slides on a rough horizontal surface. The initial speed of the block is 8.6ms . It is
brought to rest after travelling a distance of 16 m. Determine the magnitude of the frictional force.

We will use the work—kinetic energy relation, W= AEk.

The only force doing work is the frictional force, f, which acts in the opposite direction to the motion.

Waee=f X 16 X (—1) The angle between the force and the direction of motion is 180°,

so we need to multiply by cos 180°, which is —1.
The change in kinetic energy is:

AEg =3mv® —imi?=—92.45]
So: —16f=-92.45
f=58N

The magnitude of the frictional force is 5.8 N.

Work done in stretching a spring

Consider a horizontal spring whose left end is attached to a vertical wall. i

[y

|

If we apply a force F to the other end we will stretch the spring by some

amount, x. Experiments show that the force F and the extension x are

directly proportional to each other, i.e. F= kx (this is known as Hooke’s

'
|
1
1
1
1
|
|
|
|
I
I
I
I
I

law). How much work does the stretching force F do in stretching the
X1

IR s
VUMM

spring from its natural length (i.e. from zero extension) to a length where
the extension is x1, as shown in Figure 2.62.
Since the force F and the extension x are directly proportional, the

graph of force versus extension is a straight line through the origin and

work done is the area under the curve (Figure 2.63).
X2

£

F

o /
Figure 2.62 Stretching a spring requires

— | workdone work to be done.

HHHHHHHHA

2=kxa

§ -‘

0 X1 Extension F

Figure 2.63 The force F stretches the spring. Notice that as the extension increases the
force increases as well.
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Exam tip

In discussing work done it

is always important to keep

a clear picture of the force
whose work we are calculating.

Worked example

To find the work done in extending the spring from its natural length
(x=0) to extension xi, we need to calculate the area of the triangle of
base x; and height kx;. Thus:

1

area =kxcy X a1
1

area = 5kux;?

The work to extend a spring from its natural length by an amount x; is
thus:

W= %k.’)ﬁz

It follows that the work done when extending a spring from an extension
X1 to an extension x, (SO xp > x1) is:

W=3k(x;%— %,%)

The work done by the force extending the spring goes into elastic
potential energy stored in the spring. The elastic potential energy of a
spring whose extension is x is Eq Z%kxz.

2.31 A mass of 8.4kg rests on top of a vertical spring whose base is attached to the floor. The spring compresses

by 5.2 cm.

a Calculate the spring constant of the spring.

b Determine the energy stored in the spring.

a The mass is at equilibrium so mg= kx. So:

_84x938
5.2%1072

k=1583=1600Nm '

b The stored energy E, is:
Ed:%ka
Eq=1x1583% (5.2%1072)?
Ei=2.1]



Work done by gravity

We will now concentrate on the work done by a very special force,

Exam tip
When a body is displaced

ight ] ight i I : ition i
namely the weight of a body. Remember that weight is mass times such that its final position is

acceleration of free fall and is directed vertically down. Thus, if a body is at the same vertical height as

displaced horizontally, the work done by myg is zero. In this case the angle the original position, the work

between the force and the direction of motion is 90° (Figure 2.64), so: done by the weight is wero.

W= mgscos90°=0

displacement S

Figure 2.64 The force of gravity is normal to this horizontal displacement, so no work
is being done.

We are not implying that it is the weight that is forcing the body to object falling object thrown upwards
move along the table. We are calculating the work done by a particular
force (the weight) if the body (somehow) moves in a particular way.

If the body falls a vertical distance h, then the work done by the weight

is +mgh. The force of gravity is parallel to the displacement, as in Figure
2.65a.
If the body moves vertically upwards to a height k from the launch

displacement

point, then the work done by the weight is —mgh since now the angle

between direction of force (vertically down) and displacement (vertically
up) is 180°.The force of gravity is parallel to the displacement but

opposite in direction, as in Figure 2.65b. =
Suppose now that instead of just letting the body fall or throwing it
upwards, we use a rope to either lower it or raise it, at constant speed,
by a height h (Figure 2.66). The work done by the weight is the same as
before, so nothing changes. But we now ask about the work done by the

a b

Figure 2.65 The force of gravity (green

4 ] ) arrows) is parallel to the displacement in a
force F that lowers or raises the body. Since F is equal and opposite to the and opposite in b.

weight, the work done by F is —mgh as the body is lowered and +mgh as it

is being raised.

You should be able to see how
this is similar to the work done
by the stretching and tension

moving

moving j { - ’
\‘ ‘ up forces in a spring.

down

Figure 2.66 Lowering and raising an object at constant speed using a rope.
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Figure 2.67 The work done by gravity is
independent of the path followed.

Exam tip

Potential energy is the energy
of a system due to its position
or shape and represents the
work done by an external
agent in bringing the system to
that position or shape.

Exam tip
Notice that in the data booklet
the formula uses Ax in place of

our x.

Consider now the case where a body moves along some arbitrary path,
as shown by the red line in Figure 2.67.The work done by the weight
of the body as the body descends along the curve is still mgh.You can
prove this amazing result easily by approximating the curved path with a
‘staircase” of vertical and horizontal steps. Along the horizontal steps the
work done is zero, cos 90° = 0. Along the vertical steps the work is mgAh,
where Ah is the step height. Adding up all the vertical steps gives mgh. This
means that:

The work done by gravity is independent of the path followed
and depends only on the vertical distance separating the initial and
final positions.

The independence of the work done on the path followed is a property
of a class of forces (of which weight is a prominent member) called
conservative forces.

Mechanical energy

In the previous two sections we discussed the work done when a body is
moved when attached to a spring and in a gravitational field. We derived
two main results.

In the case of the spring, we showed that the work done by the
stretching force in extending the spring a distance x away from the natural
length of the spring is /= %xz.

In the case of motion within a gravitational field the work done by the
force moving the body, is W= mgh to raise the body a height / from its
initial position.

We use these results to define two different kinds of potential energy,
Ep.

For the mass—spring system we define the elastic potential energy
to be the work done by the pulling force in stretching the spring by an
amount x, that is:

Ep= %kxz

For the Earth—mass system we define the gravitational potential
energy to be the work done by the moving force in placing a body a
height h above its initial position, that is:

Ep=mgh

Notice that potential energy is the property of a system, not of an
individual particle.

So we are now in a position to go back to the first part of Subtopic 2.3
and answer some of the questions posed there. We said that:

AE=W+Q



If the system is in contact with surroundings at a different
temperature there will be a transfer of heat, Q. If there is no
contact and no temperature difference, then Q=0.

If no work is done on the system from outside, then TW=0.When Exam tip
Q+ W=0, the system is called isolated and in that case AE=0.The total You must make sure that
energy of the system does not change. We have conservation of the you do not confuse the
total energy of the system. work—kinetic energy relation
What does the total energy E consist of? It includes chemical energy, Waet = AEg with AE=TV.
internal energy (due to the translational, rotational energy and The work—kinetic energy
vibrational energy of the molecules of the substance), nuclear energy, relation relates the net work
kinetic energy, elastic potential energy, gravitational potential energy and on a system to the change in
any other form of potential energy such as electrical potential energy. the system’s kinetic energy. The
But in this section, dealing with mechanics, the total energy E will other relates the work done by
be just the sum of the kinetic, the elastic and the gravitational potential outside forces to the change of
energies. the total energy.

So for a single particle of mass m, the energy is:
E= %mvz +mgh+ %Iexz

This is also called the total mechanical energy of the system consisting
of the particle, the spring and the Earth. I¥ stands for work done by forces
outside the system. So this does not include work due to spring tension
forces or the weight since the work of these forces is already included as
potential energy in E.

Worked examples

2.32 You hold a ball of mass 0.25kg in your hand and throw it so that it leaves your hand with a speed of 12ms™".
Calculate the work done by your hand on the ball.

The question asks for work done but here we do not know the forces that acted on the ball nor the distance by
which we moved it before releasing it. But using AE= W, we find:

W=%m1)2
W=1x0.25x122=36]

Notice that here we have no springs and we may take h=0.

2.33 Suppose that in the previous example your hand moved a distance of 0.90 m in throwing the ball. Estimate
the average net force that acted on the ball.

The work done was 36] and so Fs=36] with s=0.90m. This gives F=40N.
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2.34 A body of mass 4.2kg with initial speed 5.6 ms ! begins to move up an incline, as shown in Figure 2.68.

56ms™
—

Figure 2.68

The body will be momentarily brought to rest after colliding with a spring of spring constant 220 Nm . The
body stops a vertical distance 0.85m above its initial position. Determine the amount by which the spring has
been compressed. There are no frictional forces.

There are no external forces doing work and so #7=0.The system is isolated and we have conservation of total energy.
Initially we have just kinetic energy, so:
Einigia =3m1” + mgh+ 3ex® =3 X 4.2%5.62+ 0+ 0=65.856]
When the body stops we have:
Einical = 3m1” + mgh+3kx® =0+ 42X 9.8 X 0.85 +3 X 220 X &> = 34.99 + 110x
Thus, equating Ejpi, to Egina we find:

34.99 +110x*=65.856
110x%=30.866
x2=0.2806

x=0.53m

2.35 We repeat the previous example question but now there is constant frictional force opposing the motion
along the uphill part of the path.The length of this path is 1.2m and the frictional force is 15N.

We have AE= IW.The work done is:
Fscos§=15%X12%X(—-1)=—-18]
As in the previous example, we have:

Einjtial = 65856]
Eppa=34.99 + 11042

leading to:

110x*>=12.866

. 12,866
* 7110
x=0.34m

The ‘work done by friction’ of —18] is energy that is dissipated as thermal energy inside the body and its
surroundings. It is in general very difficult to estimate how much of this thermal energy stays within the body and
how much goes into the surroundings. '



2.36 A mass of 5.00kg moving with an initial velocity of 2.0ms ™" is acted upon by a force 55N in the direction

of the velocity. The motion is opposed by a frictional force. After travelling a distance of 12m the velocity of
the body becomes 15ms™!. Determine the magnitude of the frictional force.

Here Q=0 so that AE= V.

The change in total energy AE is the change in kinetic energy (we have no springs and no change of height):
AE=1x5.00x15*—3%5.00%2.02=552.5]

Let the frictional force be f. The work done on the mass is (55—f) X 12, and so:
(B5—f)Xx12=552.5

5525
B

55—f=46.0
F=9.0N

The ‘work done by friction’ of —9.0 X 12=—108] is energy that is dissipated as thermal energy inside the body and
its surroundings.

2.37 A mass m hangs from two strings attached to the ceiling such that they make the same angle with the vertical
(as shown in Figure 2.69).The strings are shortened very slowly so that the mass is raised a distance Ah above
its original position. Determine the work done by the tension in each string as the mass is raised.

\ + vertical

Figure 2.69

The net work done is zero since the net force on the mass is zero. The work done by gravity is —mgAh and thus the

work done by the two equal tension forces is +mgAh. The work done by each is thus 5
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2.38 A pendulum of length 1.0m is released from rest with the string at an angle of 10° to the vertical. Find the
speed of the mass on the end of the pendulum when it passes through its lowest position.

Let us take as the reference level the lowest point of the pendulum (Figure 2.70). The total energy at that point is
just kinetic, Ex = %mvz, where v is the unknown speed.

10

1.0m 1.0 cos 10°

potential energy
——————mf--—-————————-C=~=--Only

= o iap

‘:::___e_,_—_—::_’ L s

kinetic energy only

Figure 2.70

At the initial point, the total energy is just potential, Ep =mgAh, where Ah is the vertical difference in height
between the two positions. From the diagram:

Ah=1.00—1.00cos 10°
Ah=0.015m
Equating the expressions for the total energy at the lowest point and at the start:
%mvz =mgAh
v="\2gAh
»=0.55ms "'

Note how the mass has dropped out of the problem. (At positions other than the two shown, the mass has both
kinetic and potential energy.)

2.39 Determine the minimum speed of the mass in Figure 2.71 at the initial point such that the mass makes it
over the barrier of height h.

V=27
(b

Figure 2.71

To make it over the barrier the mass must be able to reach the highest point. Any speed it has at the top will mean
it can carry on to the other side. Therefore, at the very least, we must be able to get the ball to the highest point
with zero speed.



With zero speed at the top, the total energy at the top of the barrier is E= mgh.

The total energy at the starting position is %mvz'

Equating the initial and final energy:
%mvz =mgh
= v="2gh
Thus, the initial speed must be bigger than v= @

Note that if the initial speed u of the mass is larger than v= \2gh, then when the mass makes it to the original level
on the other side of the barrier, its speed will be the same as the starting speed u.

2.40 A ball rolls off a 1.0m high table with a speed of Q—>_4;()_Tf_1
4.0ms™!, as shown in Figure 2.72. Calculate the 4" Fehimeinns s 1= ol
speed as the ball strikes the floor. : Vo i ’ \\\

I8 ;
Figure 2.72

The total energy of the mass is conserved. As it leaves the table with speed u it has total energy given by
Einitial Z%mu2 + mgh and as it lands with speed v the total energy is Eﬁmi:%mvz (v 1s the speed we are looking for).

Equating the two energies gives:

2= %mu2 +mgh

1

gmv
= v2=u2+2gh

¥ =16+20=36

= v=6.0ms '

2.41 Two identical balls are launched from a table with the same speed u
(Figure 2.73). One ball is thrown vertically up and the other vertically
down. The height of the table from the floor is k. Predict which of e ST |
the two balls will hit the floor with the greater speed. i} |

| L
| h i u

| |

!'

|

1

Figure 2.73

At launch both balls have the same kinetic energy and the same potential energy. When they hit the floor their
energy will be only kinetic. Hence the speeds will be identical and equal to v, where:

1 1
smv? = zmu* + mgh

= *"uP+2gh

= v=\u’+20h
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2.42 A body of mass 2.0kg (initially at rest) slides down a curved path of total length 22m, as shown in
Figure 2.74.The body starts from a vertical height of 5.0m from the bottom. When it reaches the bottom,
its speed is measured and found to equal 6.0ms™".
a Show that there is a force resisting the motion.
b Assuming the force to have constant magnitude, determine the magnitude of the force.

50m

Figure 2.74

a The only external force that could do work is a frictional force.

At the top: Einita =3mv” + mgh=0+2.0Xx9.8%X5.0=98]

At the bottom:  Egna =3m1? + mgh=2x2.0X6.0°+0=236]

The total energy has reduced, which shows the presence of a frictional force resisting the motion.
b From AE= W we deduce that W=—62].This is the work done by the frictional force, magnitude f.

The force acts in the opposite direction to the motion, so:

fix(-1)=—62]
62

=2

f=28N

Power

When a machine performs work, it is important to know not only how
much work is being done but also how much work is performed within
a given time interval. A cyclist will perform a lot of work in a lifetime of
cycling, but the same work can be performed by a powerful car engine in
a much shorter time. Power is the rate at which work is being performed
or the rate at which energy is being transferred.

When a quantity of work AW is performed within a time interval
At the power developed is given by the ratio:

AW
- At

is called the power developed. Its unit is joule per second and this
is given the name watt (W): 1TW=1]s".




Consider a constant force F, which acts on a body of mass m.The force

does an amount of work FAx in moving the body a small distance Ax
along its direction. If this work is performed in time At, then:

AW
P==5

Ax

P—FE
P=Fy

where v is the instantaneous speed of the body. This is the power
produced in making the body move at speed v. As the speed increases, the
power necessarily increases as well.

Consider an aeroplane moving at constant speed on a straight-line path.
If the power produced by its engines is P, and the force pushing it forward
is F, then P, F and v are related by the equation above. But since the plane
moves with no acceleration, the total force of air resistance must equal F.
Hence the force of air resistance can be found simply from the power of
the plane’s engines and the constant speed with which it coasts.

Worked example

2.43 Estimate the minimum power required to lift a mass of 50.0kg up a vertical distance of 12m in 5.0s.

The work done in lifting the mass is mgh:

W=mgh=50.0x10X12

W=6.0%x10"]
The power is therefore: \

_w
At
_6.0X 10°
5.0

p

=1200W

This is the minimum power required. In practice, the mass has to be accelerated from rest, which will require
additional work and hence more power. There will also be frictional forces to overcome.

Efficiency

If a machine, such as an electric motor, is used to raise a load, electrical
energy must be provided to the motor. This is the input energy to the
motor. The motor uses some of this energy to do the useful work of raising
the load. But some of the input energy is used to overcome frictional
forces and therefore gets converted to thermal energy. So the ratio:

useful energy out useful power out
: or -
actual energy in actual power in

is less than one. We call this ratio the efficiency of the machine.
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Figure 2.75 Forces on a body on an inclined
plane: pulling force F, frictional force f,
reaction R and weight mg.

Worked example

Suppose that a body is being pulled up along a rough inclined plane
with constant speed. The mass is 15 kg and the angle of the incline is 45°.
There is a constant frictional force of 42N opposing the motion.

The forces on the body are shown in Figure 2.75. Since the body has
no acceleration, we know that:

R=mgcosd=106.1N
F=mgsin0+f=106.1+42=148.1N=150N

Let the force raise the mass a distance of 20m along the plane. The work
done by the force F is:

W=148.1%20
W=2960]~3.0 X 10%]

The force effectively raised the 15kg a vertical height of 14.1m and so
increased the potential energy of the mass by mgh=2121].The efficiency
with which the force raised the mass is thus:

. _ 2121
efficiency = 5960

efficiency =0.72

2.44 A 0.50kg battery-operated toy train moves with constant velocity 0.30ms " along a level track. The power
of the motor in the train is 2.0 W and the total force opposing the motion of the train is 5.0 N.
a Determine the efficiency of the train’s motor.
b Assuming the efficiency and the opposing force stay the same, calculate the speed of the train as it climbs
an incline of 10.0° to the horizontal.

a The power delivered by the motor is 2.0 W. Since the speed is constant, the force developed by the motor is

also 5.0N.

The power used in moving the train is Fv=5.0x0.30=1.5W.

Hence the efficiency is:

total power out _ 1.5W
total power in  2.0W

total power out _
total power in

0.75

The efficiency of the train’s motor is 0.75 (or 75%).



b The component of the train’s weight acting down the plane is mgsin @ and the force opposing motion is 5.0 N.

Since there is no acceleration (constant velocity), the net force F pushing the train up the incline is:

F=mgsin0+5.0
F=0.50x10Xsin10°+5.0
F=589N=59N

Thus:

5.89 Xy
2.0

efficiency =

But from part a the efficiency is 0.75, so:

_ 5.89%yp
075 ==—0
_2.0%0.75
SR T
v=0.26ms !
Nature of science

The origin of conservation principles

Understanding of what energy is has evolved over time, with Einstein
showing that there is a direct relationship between mass and energy in his
famous equation E=m¢. In this section we have seen how the principle
of conservation of energy can be applied to different situations to predict
and explain what will happen. Scientists have been able to use the theory
to predict the outcome of previously unknown interactions in particle
physics.

The principle of conservation of energy is perhaps the best known
example of a conservation principle. But where does it come from? It
turns out that all conservation principles are consequences of symmetry.
In the case of energy, the symmetry is that of ‘time translation invariance’.
This means that when describing motion (or anything else) it does not
matter when you started the stopwatch. So a block of mass 1kg on a table
1m above the floor will have a potential energy of 10] according to both
an observer who starts his stopwatch ‘now’ and another who started it
10 seconds ago. The principle of conservation of momentum, which is
discussed in Subtopic 2.4, is also the result of a symmetry. The symmetry
this time is ‘space translation invariance’, which means that in measuring
the position of events it does not matter where you place the origin of
your ruler.
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@ ?  Test yourself

55

56

57

58

59

60

A horizontal force of 24N pulls a body a
distance of 5.0m along its direction. Calculate
the work done by the force.

A block slides along a rough table and is brought
to rest after travelling a distance of 2.4m. A force
of 3.2 N opposes the motion. Calculate the work
done by the opposing force.

A block is pulled as shown in the diagram by a
force making an angle of 20° to the horizontal.
Find the work done by the pulling force when
its point of application has moved 15m.

15m

A block of mass 2.0kg and an initial speed of
5.4ms * slides on a rough horizontal surface
and is eventually brought to rest after travelling
a distance of 4.0 m. Calculate the frictional force
between the block and the surface.

A spring of spring constant k= 200Nm ' is
slowly extended from an extension of 3.0 cm to
an extension of 5.0 cm. Calculate the work done
by the extending force.

Look at the diagram.
a i Calculate the minimum speed v the ball
must have in order to make it to position B.
ii What speed will the mass have at B?
b Given that v=12.0ms ", calculate the speed at
A and B.

61

62

63

64

The speed of the 8.0kg mass in position A in
the diagram is 6.0ms™ '. By the time it gets to B

the speed is measured to be 12.0ms ™.

@

h=120m

Estimate the frictional force opposing the motion.
(The frictional force is acting along the plane.)

A force F acts on a body of mass m=2.0kg
initially at rest. The graph shows how the force
varies with distance travelled (along a straight line).

Y ceci Wt

0 5 10 15 20
s/m

a Find the work done by this force.

b Calculate the final speed of the body.

A body of mass 12kg is dropped vertically from

rest from a height of 80m.

a Ignoring any resistance forces during the
motion of this body, draw graphs to represent
the variation with distance fallen of:

i the potential energy
ii the kinetic energy.

b For the same motion draw graphs to represent

the variation with time of:
i the potential energy
ii the kinetic energy.

¢ Describe qualitatively the effect of a constant
resistance force on each of the four graphs you
drew.

The engine of a car is developing a power of

90 kW when it is moving on a horizontal road at

a constant speed of 100kmh™". Estimate the total

horizontal force opposing the motion of the car.



65

66

67

68

69

The motor of an elevator develops power at a

rate of 2500 W.

a Calculate the speed that a 1200kg load is
being raised at.

b In practice it is found that the load is lifted
more slowly than indicated by your answer to
a. Suggest reasons why this is so.

A load of 50kg is raised a vertical distance of

15m in 1255 by a motor.

a Estimate the power necessary for this.

b The power supplied by the motor is in fact
80W. Calculate the efficiency of the motor.

¢ The same motor is now used to raise a load
of 100kg the same distance. The efficiency
remains the same. Estimate how long this
would take.

The top speed of a car whose engine is

delivering 250 kW of power is 240kmh ™"

Calculate the value of the resistance force on the

car when it is travelling at its top speed on a level

road.

An elevator starts on the ground floor and stops

on the 10th floor of a high-rise building. The

elevator reaches a constant speed by the time

it reaches the 1st floor and decelerates to rest

between the 9th and 10th floors. Describe the

energy transformations taking place between the
1st and 9th floors.

A mass m of 4.0kg slides down a frictionless

incline of 6= 30° to the horizontal. The mass

starts from rest from a height of 20m.

a Sketch a graph of the kinetic and potential
energies of the mass as a function of time.

b Sketch a graph of the kinetic and potential
energies of the mass as a function of distance
travelled along the incline.

¢ On each graph, sketch the sum of the
potential and kinetic energies.

71

70 A mass m is being pulled up an inclined plane of

angle 6 by a rope along the plane.

a Find is the tension in the rope if the mass
moves up at constant speed v.

b Calculate is the work done by the tension
when the mass moves up a distance of dm
along the plane.

¢ Find is the work done by the weight of the
mass.

d Find is the work done by the normal reaction
force on the mass.

e What is the net work done on the mass?

A battery toy car of mass 0.250kg is made

to move up an inclined plane that makes an

angle of 30° with the horizontal. The car starts

from rest and its motor provides a constant
acceleration of 4.0ms 2 for 5.0s. The motor is
then turned off.

a Find the distance travelled in the first 5s.

b Find the furthest the car gets on the inclined
plane.

c Calculate when the car returns to its starting
position.

d Sketch a graph of the velocity as a function of
time.

e On the same axes, sketch a graph of the
kinetic energy and potential energy of the car
as a function of the distance travelled.

f State the periods in the car’s motion in which
its mechanical energy is conserved.

g Estimate the average power developed by the
car’s motor.

h Determine the maximum power developed by
the motor.
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Learning objectives 2.4 Momentum and impulse

This section introduces the concept of linear momentum, which is a very

e Be able to re-formulate

useful and powerful concept in physics. Newton’s second law is expressed

Newton’s second law when the

in terms of momentum. The law of conservation of linear momentum

mass is variable.

makes it possible to predict the outcomes in very many physical situations.

o Understand the concept of

impulse and be able to analyse

g . Newton’s second law in terms of momentum
orce—time graphs.

o Be able to derive and apply We saw earlier that Newton’s second law was expressed as Fpe= ma. In
thie ke of conservation of fact, this equation is only valid when the mass of the system remains

e constant. But there are plenty of situations where the mass does #ot remain

o Analyse elastic and inelastic constant. In cases where the mass changes, a different version of the

collisions and explosions. second law must be used. Examples include:

e the motion of a rocket, where the mass decreases due to burnt fuel
ejected away from the rocket

e sand falling on a conveyor belt so the mass increases

e a droplet of water falling through mist and increasing in mass as more
water condenses.
We define a new concept, linear momentum, p, to be the product of

the mass of a body times its velocity:

Ip=mv

Momentum is a vector and has the direction of the velocity. Its unit is
kgms™! or the equivalent Ns.

In terms of momentum, Newton’s second law is:

Ap
Fret= E
The average net force on a system is equal to the rate of change
of the momentum of the system.

It is easy to see that if the mass stays constant, then this version reduces to
the usual ma:

_ AP _ Pfinal ~ Pinitial

Foe= At At

_ MVfinal — MVipjial
At

=m (Vﬁnal — Vim'tial)
At

mAv
At

Foet= ma



Worked examples

2.45 A cart moves in a horizontal line with constant
speed v. Rain starts to fall and the cart fills with
water at a rate of okgs~'. (This means that in one

Exam tip

Worked example 2.45 should alert you
right away that you must be careful when

second, okg have fallen on the cart.) The cart :
mass changes. Zero acceleration does not

must keep moving at constant speed. Determine

the force that must be applied on the cart. imply zero net force in this case.

Notice right away that if F,..=ma (we drop the bold italic of the vector notation) were valid, the force would have
to be zero since the car is not accelerating. But we do need a force to act on the cart because the momentum of
the cart is increasing (because the mass is increasing). This force is:

FAp_Alm) _vAm
E=SONT At At

vo

Putting some real values in, if =0.20kgs ™! and v=3.5ms™ " the force would have to be 0.70N.

2.46 Gravel falls vertically on a conveyor belt at a rate
of ckgs™', as shown in Figure 2.76.

This very popular exam question is
similar to Worked example 2.45, but
is worth doing again.

Figure 2.76

a Determine:
i the force that must be applied on the belt to keep it moving at constant speed v
ii the power that must be supplied by the motor turning the belt
iii the rate at which the kinetic energy of the gravel is changing.
b Explain why the answers to a ii and a iii are different.

a i The force is:

_Ap_ A(mv) _vAm _

Fret= 3= A At °

ii The power is found from P= Fv. Substituting for F:
P= (vo)v=ov’

iii In 1 second the mass on the belt increases by okg. The kinetic energy of this mass is:
EBg= %m}z

This is the increase in kinetic energy in a time of 1s, so the rate of kinetic energy increase is %mzz.

b The rate of increase in kinetic energy is less than the power supplied. This is because the power supplied by the
motor goes to increase the kinetic energy of the gravel and also to provide the energy needed to accelerate the
gravel from O to speed v in the short interval of time when the gravel slides on the belt before achieving the
constant final speed v.
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2.47 A 0.50kg ball is dropped from rest above a hard floor. When it reaches the floor it has a velocity of 4.0 ms ..
The ball then bounces vertically upwards. Figure 2.77 is the graph of velocity against time for the ball. The

positive direction for velocity is upwards.

a Find the magnitude of the momentum change of the ball during the bounce.
b The ball stayed in contact with the floor for 0.15s. What average force did the floor exert on the ball?

v/ms™
ap

reaction force R

0 : B
\/ weight mg

—2.0

Figure 2.77

a The momentum when the ball hits the floor is:

The momentum when the ball rebounds from the floor is:

The magnitude of the momentum change is therefore 3.0 Ns.

0.50x4.0=2.0N's
0.50 X (—2.0)=—1.0N's

b The forces on the ball are its weight and the reaction from the floor, R.

Pt =R —mg

This is also the force that produces the change in momentum:

A
Fau="%0
Substituting in this equation:

=
Fau=715=20N

We need to find R, so:

R=20+5.0=25N.

The average force exerted on the ball by the floor is 25 N.

100

Exam tip

This is a very tricky problem with lots of
possibilities for error. A lot of people forget
to include the minus sign in the rebound
velocity and also forget the weight, so they
answer incorrectly that R=20N.



Impulse and force-time graphs

We may rearrange the equation:

_Ap
Fnet - At
to get:
Ap= FoeiAt

The quantity FoeAt is called the impulse of the force, and is usually
denoted by J. It is the product of the average force times the time

for which the force acts. The impulse is also equal to the change in
momentum. Notice that impulse is a vector whose direction is the same as
that of the force (or the change in momentum).

When you jump from a height of; say, 1 m, you will land on the
ground with a speed of about 4.5ms ™. Assuming your mass is 60 kg, your
momentum just before landing will be 270 N's and will become zero after
you land. From F :X’% this can be achieved with a small force acting for
a long time or large force acting for a short time.You will experience the
large force if you do not bend your knees upon landing — keeping your
knees stiff means that you will come to rest in a short time. This means At
will be very small and the force large (which may damage your knees).

The three graphs of Figure 2.78 show three different force—time
graphs. Figure 2.78a shows a (non-constant) force that increases from
zero, reaches a maximum value and then drops to zero again. The force
acted for a time interval of about 2ms. The impulse is the area under
the curve. Without calculus we can only estimate this area by tediously
counting squares: each small square has area 0.1ms X 0.2N=2X 10" Nss.
There are about 160 full squares under the curve and so the impulse is
3x 107 Nss. (In this case it is not a bad approximation to consider the
shape under the curve to be a triangle but with a base of 1.3ms so that
the area is then $X 1.3X 1073 x 4=3x 10 >Ny

In the second graph, the force is constant (Figure 2.78b). The impulse
of the force is 6.0 X (8.0 —2.0) =36 N's. Suppose this force acts on a body
of mass 12kg, initially at rest. Then the speed v of the body after the force
stops acting can be found from:

Ap=36Ns

mv—0=36Ns

36
V:E: 3.0ms !

0 T T t/ms

F/N 10

0 T T t/s

F/N 15 17 e

0 T t/s
1 2 3 4 3 €
O s | \
3 ~N
=10 —

Figure 2.78 Three different force—time
graphs: a non-constant force, b constant
force; ¢ force that varies linearly with time.
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Worked examples

2.48 Consider the graph of Figure 2.78c.The force acts on a body of mass 3.0kg initially at rest. Calculate:
a the initial acceleration of the body
b the speed at 4.05
c the speed at 6.0s.

a The initial acceleration a is at t=0, when F=12N.

b The impulse from Os to 4.0s is the area under this part of the graph:
I1X4.0%x12=24Ns
This is equal to the change in momentum.

Let v be the speed at 4.0s. As the body is initially at rest, the momentum change is:

my—0=24
2 2 -
So v=%=%=8.0ms .

¢ The impulse from Os to 6.0s is the area under the graph, which includes part above the axis and part below the
axis. The part under the axis is negative, as the force is negative here, so the impulse is:

3X4.0%X12-5X2.0X6.0=18Ns

Hence the speed at 6.0 is VZ%Z 6.0ms ™",

2.49 A ball of mass 0.20kg moving at 3.6ms ™' on a horizontal floor collides with a vertical wall. The ball
rebounds with a speed of 3.2ms . The ball was in contact with the wall for 12ms. Determine the maximum
force exerted on the ball, assuming that the force depends on time according to Figure 2.79.

F

0 t

Figure 2.79



Let the initial velocity be positive. The rebound velocity is then negative.

Initial momentum: 0.20X3.6=0.72N's
Final momentum:  0.20X (—3.2)=-0.64 Ns
The change in momentum of the ball is:

—0.64—-0.72=-1.36 N's

The magnitude of the change in momentum is equal to the area under the force-time graph.

The area is %X 12X 1072 X F,y and so:
1X12X 107X Fyppe=1.36N's

= Frax=0.227 X 10°~2.3 X 10°N

Conservation of momentum

Consider a system with momentum p.The net force on the system is:

Ap
Fnet =737
and so if Fye =0 it follows that Ap =0.There is no change in momentum.
This is expressed as the law of conservation of momentum:

When the net force on a system is zero the momentum does not
change, i.e. it stays the same. We say it is conserved.

Notice that ‘system’ may refer to a single body or a collection of many
different bodies.

Let us consider the blue block of mass 4.0kg moving at speed 6.0ms !
to the right shown in Figure 2.80.The blue block collides with the red
block of mass 8.0kg that is initially at rest. After the collision the two
blocks move off together.

As the blocks collide, each will exert a force on the other. By Newton’s
third law, the magnitude of the force on each block is the same. There
are no forces that come from outside the system, i.e. no external forces.
You might say that the weights of the blocks are forces that come from
the outside. That is correct, but the weights are cancelled by the normal
reaction forces from the table. So the net external force on the system is
zero. Hence we expect that the total momentum will stay the same.

The total momentum before the collision is:

4.0X6.0+8.0Xx0=24Ns
The total momentum after the collision is:
(4.0+8.0) xv=12v

where v is the common speed of the two blocks.

Figure 2.80 In a collision with no external
forces acting, the total momentum of the
system stays the same.
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Figure 2.81 An outcome of the collision in
which total kinetic energy stays the same.
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Equating the momentum after the collision and the momentum before
the collision:

12v=24

= p=2.0ms |

The kinetic energy before the collision is:
1X4.0%6.0°=72]

After the collision the kinetic energy is:
$X12x2.02=24]

It appears that 48] has been ‘lost’ (into other forms of energy, e.g. thermal
energy in the blocks themselves and the surrounding air or energy to
deform the bodies during the collision and some to sound generated in
the collision).

But consider now the outcome of the collision of these two blocks in
which the blue block rebounds with speed 2.0ms ™", as shown in Figure
2.81.The red block moves off in the original direction with speed v.

What is the speed of the red block? As before, the total momentum
before the collision is 24 N's. The total momentum after the collision is
(watch the minus sign):

(4.0 X —2.0) + (8.0 X v)
blue block red block

Equating the total momentum before and after the collision we find:
—8.0+8.0xv=24

This gives v=4.0ms .
The total kinetic energy after the collision is then:

1X4.0%(-2.0)2+5%8.0x4.0>=72]
blue block red block

This is the same as the initial kinetic energy.

So, in a collision the momentum is always conserved but kinetic energy
may or may not be conserved.You will find out more about this in the
next section.

Predicting outcomes

Physics is supposed to be able to predict outcomes. So why

is there more than one outcome in the collision of Figure 2.807?
Physics does predict what happens, but more information about the
nature of the colliding bodies is needed. We need to know if they
are soft or hard, deformable or not, sticky or breakable, etc. If this
information is given physics will uniquely predict what will happen.



Kinetic energy and momentum

We have seen that, in a collision or explosion where no external forces are
present, the total momentum of the system is conserved. You can easily
convince yourself that in the three collisions illustrated in Figure 2.82
momentum is conserved. The incoming body has mass 8.0kg and the
other a mass of 12kg.

before

after

Figure 2.82 Momentum is conserved in these three collisions.

Let us examine these collisions from the point of view of energy.
In all cases the total kinetic energy before the collision is:

Ex=3%8.0X102=400]
The total kinetic energy after the collision in each case is:
case 1: Ex=3x20x42=160]
case 20 Ex=3X8.0x12+1x12x6%=220]
case 3: Ex=3Xx8.0x22+1x12x82=400]

We thus observe that whereas momentum is conserved in all cases,
kinetic energy is not. When kinetic energy is conserved (case 3), the
collision is said to be elastic. When it is not (cases 1 and 2), the collision
is inelastic. In an inelastic collision, kinetic energy is lost. When the bodies
stick together after a collision (case 1), the collision is said to be totally
inelastic (or plastic), and in this case the maximum possible kinetic
energy is lost.

The lost kinetic energy is transformed into other forms of energy, such
as thermal energy, deformation energy (if the bodies are permanently
deformed as a result of the collision) and sound energy.

Notice that using momentum, we can obtain a useful additional
formula for kinetic energy:

1 mv?

Ee=5mv =
2
o
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Worked examples

2.50 A moving body of mass m collides with a stationary body of double the mass and sticks to it. Calculate the
fraction of the original kinetic energy that is lost.

The original kinetic energy is 3mv* where v is the speed of the incoming mass. After the collision the two bodies
move as one with speed u that can be found from momentum conservation:

mv=(m+2m)u

The total kinetic energy after the collision is therefore:

1 2 m
v _mv
§<3M>X(§] =%

and so the lost kinetic energy is

m?_m? _mv
2 6 3

The fraction of the original energy that is lost is thus

mv’/3 _2
mv*/2 3

2.51 A body at rest of mass M explodes into two pieces of masses M/4 and 3M/4. Calculate the ratio of the
kinetic energies of the two fragments.

2
Here it pays to use the formula for kinetic energy in terms of momentum: EK=§—m.The total momentum before

the explosion is zero, so it is zero after as well. Thus, the two fragments must have equal and opposite momenta.
Hence:

Eiighe __p*/ (2Miighe)

Eheavy (_P)Z/ (2Mheavy)

> Elight = Mheaﬂ
Eheavy Mljght

511 Eigne _ 3M/ 4

&/J By M/ 4

/ - Elighe _ 3
Eheavy
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It all depends on the system!
Consider a ball that you drop from rest from a certain height. As the ball
falls, its speed and hence its momentum increases so momentum does not

stay the same (Figure 2.83).

4 N
! ) / \
\\\ PR /’ \\
~—__1__- - /7 i\
/ \
external ! internal !
force forces

Figure 2.83 As the ball falls, an external force acts on it (its weight), increasing its
momentum.

This is to be expected — there is an external force on the ball, namely
its weight. So the momentum of the system that consists of just the falling
ball is not conserved. If we include the Earth as part of the system then
there are no external forces and the total momentum will be conserved.
This means that the Earth moves up a bit as the ball falls!

The rocket equation

The best example of motion with varying mass is, of course, the rocket
(Figure 2.84).

This is quite a complex topic and is included here only as
supplementary material. The rocket moves with speed v. The engine is
turned on and gases leave the rocket with speed u relative to the rocket.
The initial mass of the rocket including the fuel is M. After a short time ¢
the rocket has ejected fuel of mass 8m.The mass of the rocket is therefore
reduced to M—8m and its speed increased to v+ v (Figure 2.85).

v
M —_—
u-(V+98v) T 4OV
< — J S —
om

M-dm

Figure 2.85 Diagram for deriving the rocket equation. The velocities are relative to an
observer ‘at rest on the ground.

Figure 2.84 Exhaust gases from the booster
rockets propel this space shuttle during its

launch.
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Applying the law of conservation of momentum gives (in the equation
below terms shaded the same colour cancel out):

My=(M—38m)(v+8v)—dm (u—v—=5v)
—
speed relative to ground

My = My ~+ Mdv — vém — dmdv — udm + vdm + dmdv

Mbdv=udm
_om
SV—Mu

This gives the change in speed of the rocket as a result of gases leaving
with speed u relative to the rocket. At time ¢ the mass of the rocket is M.
Dividing by 8¢ and taking the limit as 8¢ goes to zero gives the rocket
differential equation:

M T
where u is the rate at which mass is being ejected.

Nature of science

General principles such as the conservation of momentum allow for
simple and quick solutions to problems that may otherwise look complex.
Consider, for example, 2 man of mass m who stands on a plank also of
mass m. There is no friction between the floor and the plank. A man starts
walking on the plank until he get gets to the other end, at which point he
stops. What happens to the plank?

The centre of mass must remain in the same place since there is no
external force. So the final position of the plank will be as shown in
Figure 2.86: the plank moves half'its length to the left and stops.

—_—

(\

¢

N - e . Son

Figure 2.86 Conservation of momentum.

The same principles can be extended to analyse and predict the
outcomes of a wide range of physical interactions, from large-scale motion
to microscopic collisions.
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? Test yourself

The momentum of a ball increased by 12.0Ns as
a result of a force that acted on the ball for 2.00s.
Find the average force on the ball.

A 0.150kg ball moving horizontally at 3.00ms "

collides normally with a vertical wall and

bounces back with the same speed.

a Calculate the impulse delivered to the ball.

b The ball was in contact with the wall for
0.125s. Find the average force exerted by the
ball on the wall.

The bodies in the diagram suffer a head-on

collision and stick to each other afterwards. Find

their common velocity.

m
o
A ball of mass 250 g rolling on a horizontal floor

with a speed 4.00ms ™" hits a wall and bounces
with the same speed, as shown in the diagram.

a What is the magnitude and direction of the
momentum change of the ball?

b Is momentum conserved here? Why or why
not?

Two masses moving in a straight line towards

each other collide as shown in the diagram. Find

the velocity (magnitude and direction) of the

heavier mass after the collision.

before after

- w.

3.0ms™’

12.0 kg
4.0kg

PO oSS, ——

240ms?  20ms™’ v=?

77 A time-varying force varies with time as shown in

78

79

the graph. The force acts on a body of mass 4.0 kg.

a Find the impulse of the force from =0 to
{=15s.

b Find the speed of the mass at 155, assuming the
initial velocity was zero.

c State the initial velocity of the body such it is
brought to rest at 15s.

F/N 10

8

0 5 10 15 20
t/s

A boy rides on a scooter pushing on the road

with one foot with a horizontal force that

depends on time, as shown in the graph. While

the scooter rolls, a constant force of 25N opposes

the motion. The combined mass of the boy and

scooter is 25kg.

a Find the speed of the boy after 4.0s, assuming
he started from rest.

b Draw a graph to represent the variation of the
boy’s speed with time.

F/N 150

100

50 —

0 T -
0 05 1.0 15 20 25 30 35 40
t/s

A ball of mass m is dropped from a height of i,

and rebounds to a height of hy. The ball is in

contact with the floor for a time interval of t.

a Show that the average net force on the ball is
given by:

N 2ghy +
ey gl’l12 Zgl’lz

b If 11 =8.0m, h,=6.0m, t=0.125s and

m=0.250kg, calculate the average force
exerted by the ball on the floor.
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80 A ball of 